def test_pca_and_mds(): """ """ X = randn(10,3) M = MDS(X, rdim=2) u1 = M.train() P = PCA(X,rdim=2) u2 = P.train() eta = np.dot(u1.T,u2) delta = eta - np.diag(np.diag(eta)) print delta, eta assert (np.sum(delta**2)<1.e-12*np.sum(eta**2))
def test_pca(): """ Test of the multi-dimensional scaling algorithm """ X = randn(10,3) P = PCA(X, rdim=2) u = P.train() x = X[:2] a = P.test(x) eps = 1.e-12 test = np.sum(a-u[:2])**2<eps print a, u[:2] assert test