Пример #1
0
def test_normalize_tpms(tmpdir):
    tempdir = str(tmpdir)

    in_mask = example_data('tpms_msk.nii.gz')
    mskdata = nb.load(in_mask, mmap=NUMPY_MMAP).get_data()
    mskdata[mskdata > 0.0] = 1.0

    mapdata = []
    in_files = []
    out_files = []

    for i in range(3):
        mapname = example_data('tpm_%02d.nii.gz' % i)
        filename = os.path.join(tempdir, 'modtpm_%02d.nii.gz' % i)
        out_files.append(os.path.join(tempdir, 'normtpm_%02d.nii.gz' % i))

        im = nb.load(mapname, mmap=NUMPY_MMAP)
        data = im.get_data()
        mapdata.append(data.copy())

        nb.Nifti1Image(2.0 * (data * mskdata), im.affine,
                       im.header).to_filename(filename)
        in_files.append(filename)

    normalize_tpms(in_files, in_mask, out_files=out_files)

    sumdata = np.zeros_like(mskdata)

    for i, tstfname in enumerate(out_files):
        normdata = nb.load(tstfname, mmap=NUMPY_MMAP).get_data()
        sumdata += normdata
        assert np.all(normdata[mskdata == 0] == 0)
        assert np.allclose(normdata, mapdata[i])

    assert np.allclose(sumdata[sumdata > 0.0], 1.0)
Пример #2
0
def test_normalize_tpms(tmpdir):

    in_mask = example_data("tpms_msk.nii.gz")
    mskdata = np.asanyarray(nb.load(in_mask).dataobj)
    mskdata[mskdata > 0.0] = 1.0

    mapdata = []
    in_files = []
    out_files = []

    for i in range(3):
        mapname = example_data("tpm_%02d.nii.gz" % i)
        filename = tmpdir.join("modtpm_%02d.nii.gz" % i).strpath
        out_files.append(tmpdir.join("normtpm_%02d.nii.gz" % i).strpath)

        im = nb.load(mapname)
        data = im.get_fdata()
        mapdata.append(data)

        nb.Nifti1Image(2.0 * (data * mskdata), im.affine,
                       im.header).to_filename(filename)
        in_files.append(filename)

    normalize_tpms(in_files, in_mask, out_files=out_files)

    sumdata = np.zeros_like(mskdata)

    for i, tstfname in enumerate(out_files):
        normdata = nb.load(tstfname).get_fdata()
        sumdata += normdata
        assert np.all(normdata[mskdata == 0] == 0)
        assert np.allclose(normdata, mapdata[i])

    assert np.allclose(sumdata[sumdata > 0.0], 1.0)
Пример #3
0
def test_normalize_tpms():
    tempdir = mkdtemp()

    in_mask = example_data('tpms_msk.nii.gz' )
    mskdata = nb.load( in_mask ).get_data()
    mskdata[mskdata>0.0] = 1.0

    mapdata = []
    in_files = []
    out_files = []

    for i in range(3):
        mapname = example_data('tpm_%02d.nii.gz' % i)
        filename =  os.path.join(tempdir, 'modtpm_%02d.nii.gz' % i )
        out_files.append(os.path.join(tempdir, 'normtpm_%02d.nii.gz' % i ))

        im = nb.load(mapname)
        data = im.get_data()
        mapdata.append( data.copy() )

        nb.Nifti1Image(2.0 * (data * mskdata), im.get_affine(),
                    im.get_header() ).to_filename(filename)
        in_files.append( filename )

    normalize_tpms( in_files, in_mask, out_files=out_files )

    sumdata = np.zeros_like(mskdata)

    for i,tstfname in enumerate( out_files ):
        normdata = nb.load( tstfname ).get_data()
        sumdata+=normdata
        yield assert_equal, np.all( normdata[mskdata==0]==0 ), True
        yield assert_equal, np.allclose( normdata, mapdata[i] ), True

    yield assert_equal, np.allclose(sumdata[sumdata>0.0], 1.0 ), True

    rmtree(tempdir)
Пример #4
0
def test_normalize_tpms():
    tempdir = mkdtemp()

    in_mask = example_data('tpms_msk.nii.gz' )
    mskdata = nb.load( in_mask ).get_data()
    mskdata[mskdata>0.0] = 1.0

    mapdata = []
    in_files = []
    out_files = []

    for i in range(3):
        mapname = example_data('tpm_%02d.nii.gz' % i)
        filename =  os.path.join(tempdir, 'modtpm_%02d.nii.gz' % i )
        out_files.append(os.path.join(tempdir, 'normtpm_%02d.nii.gz' % i ))

        im = nb.load(mapname)
        data = im.get_data()
        mapdata.append( data.copy() )

        nb.Nifti1Image(2.0 * (data * mskdata), im.get_affine(),
                    im.get_header() ).to_filename(filename)
        in_files.append( filename )

    normalize_tpms( in_files, in_mask, out_files=out_files )

    sumdata = np.zeros_like(mskdata)

    for i,tstfname in enumerate( out_files ):
        normdata = nb.load( tstfname ).get_data()
        sumdata+=normdata
        yield assert_equal, np.all( normdata[mskdata==0]==0 ), True
        yield assert_equal, np.allclose( normdata, mapdata[i] ), True

    yield assert_equal, np.allclose(sumdata[sumdata>0.0], 1.0 ), True

    rmtree(tempdir)