Пример #1
0
def compute_iqms(settings, name='ComputeIQMs'):
    """
    Workflow that actually computes the IQMs

    .. workflow::

      from mriqc.workflows.functional import compute_iqms
      wf = compute_iqms(settings={'output_dir': 'out'})


    """
    from .utils import _tofloat
    from ..interfaces.transitional import GCOR

    biggest_file_gb = settings.get("biggest_file_size_gb", 1)

    workflow = pe.Workflow(name=name)
    inputnode = pe.Node(niu.IdentityInterface(fields=[
        'in_file', 'in_ras',
        'epi_mean', 'brainmask', 'hmc_epi', 'hmc_fd', 'fd_thres', 'in_tsnr', 'metadata',
        'exclude_index']), name='inputnode')
    outputnode = pe.Node(niu.IdentityInterface(
        fields=['out_file', 'out_dvars', 'outliers', 'out_spikes', 'out_fft']),
        name='outputnode')

    # Set FD threshold
    inputnode.inputs.fd_thres = settings.get('fd_thres', 0.2)

    # Compute DVARS
    dvnode = pe.Node(nac.ComputeDVARS(save_plot=False, save_all=True), name='ComputeDVARS',
                     mem_gb=biggest_file_gb * 3)

    # AFNI quality measures
    fwhm_interface = get_fwhmx()
    fwhm = pe.Node(fwhm_interface, name='smoothness')
    # fwhm.inputs.acf = True  # add when AFNI >= 16
    outliers = pe.Node(afni.OutlierCount(fraction=True, out_file='outliers.out'),
                       name='outliers', mem_gb=biggest_file_gb * 2.5)

    quality = pe.Node(afni.QualityIndex(automask=True), out_file='quality.out',
                      name='quality', mem_gb=biggest_file_gb * 3)

    gcor = pe.Node(GCOR(), name='gcor', mem_gb=biggest_file_gb * 2)

    measures = pe.Node(FunctionalQC(), name='measures', mem_gb=biggest_file_gb * 3)

    workflow.connect([
        (inputnode, dvnode, [('hmc_epi', 'in_file'),
                             ('brainmask', 'in_mask')]),
        (inputnode, measures, [('epi_mean', 'in_epi'),
                               ('brainmask', 'in_mask'),
                               ('hmc_epi', 'in_hmc'),
                               ('hmc_fd', 'in_fd'),
                               ('fd_thres', 'fd_thres'),
                               ('in_tsnr', 'in_tsnr')]),
        (inputnode, fwhm, [('epi_mean', 'in_file'),
                           ('brainmask', 'mask')]),
        (inputnode, quality, [('hmc_epi', 'in_file')]),
        (inputnode, outliers, [('hmc_epi', 'in_file'),
                               ('brainmask', 'mask')]),
        (inputnode, gcor, [('hmc_epi', 'in_file'),
                           ('brainmask', 'mask')]),
        (dvnode, measures, [('out_all', 'in_dvars')]),
        (fwhm, measures, [(('fwhm', _tofloat), 'in_fwhm')]),
        (dvnode, outputnode, [('out_all', 'out_dvars')]),
        (outliers, outputnode, [('out_file', 'outliers')])
    ])

    # Add metadata
    meta = pe.Node(ReadSidecarJSON(), name='metadata',
                   run_without_submitting=True)
    addprov = pe.Node(niu.Function(function=_add_provenance), name='provenance',
                      run_without_submitting=True)
    addprov.inputs.settings = {
        'fd_thres': settings.get('fd_thres', 0.2),
        'hmc_fsl': settings.get('hmc_fsl', True),
        'webapi_url': settings.get('webapi_url'),
        'webapi_port': settings.get('webapi_port'),
    }

    # Save to JSON file
    datasink = pe.Node(IQMFileSink(
        modality='bold', out_dir=str(settings['output_dir']),
        dataset=settings.get('dataset_name', 'unknown')),
        name='datasink', run_without_submitting=True)

    workflow.connect([
        (inputnode, datasink, [('in_file', 'in_file'),
                               ('exclude_index', 'dummy_trs')]),
        (inputnode, meta, [('in_file', 'in_file')]),
        (inputnode, addprov, [('in_file', 'in_file')]),
        (meta, datasink, [('subject', 'subject_id'),
                          ('session', 'session_id'),
                          ('task', 'task_id'),
                          ('acquisition', 'acq_id'),
                          ('reconstruction', 'rec_id'),
                          ('run', 'run_id'),
                          ('out_dict', 'metadata')]),
        (addprov, datasink, [('out', 'provenance')]),
        (outliers, datasink, [(('out_file', _parse_tout), 'aor')]),
        (gcor, datasink, [(('out', _tofloat), 'gcor')]),
        (quality, datasink, [(('out_file', _parse_tqual), 'aqi')]),
        (measures, datasink, [('out_qc', 'root')]),
        (datasink, outputnode, [('out_file', 'out_file')])
    ])

    # FFT spikes finder
    if settings.get('fft_spikes_detector', False):
        from .utils import slice_wise_fft
        spikes_fft = pe.Node(niu.Function(
            input_names=['in_file'],
            output_names=['n_spikes', 'out_spikes', 'out_fft'],
            function=slice_wise_fft), name='SpikesFinderFFT')

        workflow.connect([
            (inputnode, spikes_fft, [('in_ras', 'in_file')]),
            (spikes_fft, outputnode, [('out_spikes', 'out_spikes'),
                                      ('out_fft', 'out_fft')]),
            (spikes_fft, datasink, [('n_spikes', 'spikes_num')])
        ])
    return workflow
Пример #2
0
def compute_iqms(settings, name='ComputeIQMs'):
    """Workflow that actually computes the IQMs"""
    workflow = pe.Workflow(name=name)
    inputnode = pe.Node(niu.IdentityInterface(fields=[
        'subject_id', 'session_id', 'task_id', 'run_id', 'orig', 'epi_mean',
        'brainmask', 'hmc_epi', 'hmc_fd', 'in_tsnr', 'metadata']), name='inputnode')
    outputnode = pe.Node(niu.IdentityInterface(
        fields=['out_file', 'out_dvars', 'outliers', 'out_spikes', 'out_fft']),
                         name='outputnode')

    deriv_dir = check_folder(op.abspath(op.join(settings['output_dir'], 'derivatives')))

    # Compute DVARS
    dvnode = pe.Node(nac.ComputeDVARS(save_plot=False, save_all=True), name='ComputeDVARS')

    # AFNI quality measures
    fwhm = pe.Node(afni.FWHMx(combine=True, detrend=True), name='smoothness')
    # fwhm.inputs.acf = True  # add when AFNI >= 16
    outliers = pe.Node(afni.OutlierCount(fraction=True, out_file='ouliers.out'),
                       name='outliers')
    quality = pe.Node(afni.QualityIndex(automask=True), out_file='quality.out',
                      name='quality')

    # FFT spikes finder
    spikes_fft = pe.Node(niu.Function(
        input_names=['in_file'], output_names=['n_spikes', 'out_spikes', 'out_fft'],
        function=slice_wise_fft), name='SpikesFinderFFT')

    measures = pe.Node(FunctionalQC(), name='measures')

    workflow.connect([
        (inputnode, dvnode, [('orig', 'in_file'),
                             ('brainmask', 'in_mask')]),
        (inputnode, measures, [('epi_mean', 'in_epi'),
                               ('brainmask', 'in_mask'),
                               ('hmc_epi', 'in_hmc'),
                               ('hmc_fd', 'in_fd'),
                               ('in_tsnr', 'in_tsnr')]),
        (inputnode, fwhm, [('epi_mean', 'in_file'),
                           ('brainmask', 'mask')]),
        (inputnode, spikes_fft, [('orig', 'in_file')]),
        (inputnode, quality, [('hmc_epi', 'in_file')]),
        (inputnode, outliers, [('hmc_epi', 'in_file'),
                               ('brainmask', 'mask')]),
        (dvnode, measures, [('out_all', 'in_dvars')]),
        (dvnode, outputnode, [('out_all', 'out_dvars')]),
        (outliers, outputnode, [('out_file', 'outliers')]),
        (spikes_fft, outputnode, [('out_spikes', 'out_spikes'),
                                  ('out_fft', 'out_fft')])
    ])

    # Save to JSON file
    datasink = pe.Node(IQMFileSink(
        modality='bold', out_dir=deriv_dir), name='datasink')

    workflow.connect([
        (inputnode, datasink, [('subject_id', 'subject_id'),
                               ('session_id', 'session_id'),
                               ('task_id', 'task_id'),
                               ('run_id', 'run_id'),
                               ('metadata', 'metadata')]),
        (outliers, datasink, [(('out_file', _parse_tout), 'aor')]),
        (quality, datasink, [(('out_file', _parse_tqual), 'aqi')]),
        (measures, datasink, [('out_qc', 'root')]),
        (spikes_fft, datasink, [('n_spikes', 'spikes_num')]),
        (fwhm, datasink, [(('fwhm', fwhm_dict), 'root0')]),
        (datasink, outputnode, [('out_file', 'out_file')])
    ])
    return workflow
Пример #3
0
def compute_iqms(settings, name='ComputeIQMs'):
    """
    Workflow that actually computes the IQMs

    .. workflow::

      from mriqc.workflows.functional import compute_iqms
      wf = compute_iqms(settings={'output_dir': 'out'})


    """
    from mriqc.workflows.utils import _tofloat

    biggest_file_gb = settings.get("biggest_file_size_gb", 1)

    workflow = pe.Workflow(name=name)
    inputnode = pe.Node(niu.IdentityInterface(fields=[
        'subject_id', 'session_id', 'task_id', 'acq_id', 'rec_id', 'run_id',
        'orig', 'epi_mean', 'brainmask', 'hmc_epi', 'hmc_fd', 'fd_thres',
        'in_tsnr', 'metadata'
    ]),
                        name='inputnode')
    outputnode = pe.Node(niu.IdentityInterface(
        fields=['out_file', 'out_dvars', 'outliers', 'out_spikes', 'out_fft']),
                         name='outputnode')
    #Set FD threshold
    inputnode.inputs.fd_thres = settings.get('fd_thres', 0.2)
    deriv_dir = check_folder(
        op.abspath(op.join(settings['output_dir'], 'derivatives')))

    # Compute DVARS
    dvnode = pe.Node(nac.ComputeDVARS(save_plot=False, save_all=True),
                     name='ComputeDVARS')
    dvnode.interface.estimated_memory_gb = biggest_file_gb * 3

    # AFNI quality measures
    fwhm = pe.Node(afni.FWHMx(combine=True, detrend=True), name='smoothness')
    # fwhm.inputs.acf = True  # add when AFNI >= 16
    outliers = pe.Node(afni.OutlierCount(fraction=True,
                                         out_file='ouliers.out'),
                       name='outliers')
    outliers.interface.estimated_memory_gb = biggest_file_gb * 2.5
    quality = pe.Node(afni.QualityIndex(automask=True),
                      out_file='quality.out',
                      name='quality')
    quality.interface.estimated_memory_gb = biggest_file_gb * 3

    measures = pe.Node(FunctionalQC(), name='measures')
    measures.interface.estimated_memory_gb = biggest_file_gb * 3

    workflow.connect([(inputnode, dvnode, [('hmc_epi', 'in_file'),
                                           ('brainmask', 'in_mask')]),
                      (inputnode, measures, [('epi_mean', 'in_epi'),
                                             ('brainmask', 'in_mask'),
                                             ('hmc_epi', 'in_hmc'),
                                             ('hmc_fd', 'in_fd'),
                                             ('fd_thres', 'fd_thres'),
                                             ('in_tsnr', 'in_tsnr')]),
                      (inputnode, fwhm, [('epi_mean', 'in_file'),
                                         ('brainmask', 'mask')]),
                      (inputnode, quality, [('hmc_epi', 'in_file')]),
                      (inputnode, outliers, [('hmc_epi', 'in_file'),
                                             ('brainmask', 'mask')]),
                      (dvnode, measures, [('out_all', 'in_dvars')]),
                      (fwhm, measures, [(('fwhm', _tofloat), 'in_fwhm')]),
                      (dvnode, outputnode, [('out_all', 'out_dvars')]),
                      (outliers, outputnode, [('out_file', 'outliers')])])

    # Save to JSON file
    datasink = pe.Node(IQMFileSink(modality='bold', out_dir=deriv_dir),
                       name='datasink')

    workflow.connect([
        (inputnode, datasink, [('subject_id', 'subject_id'),
                               ('session_id', 'session_id'),
                               ('task_id', 'task_id'), ('acq_id', 'acq_id'),
                               ('rec_id', 'rec_id'), ('run_id', 'run_id'),
                               ('metadata', 'metadata')]),
        (outliers, datasink, [(('out_file', _parse_tout), 'aor')]),
        (quality, datasink, [(('out_file', _parse_tqual), 'aqi')]),
        (measures, datasink, [('out_qc', 'root')]),
        (datasink, outputnode, [('out_file', 'out_file')])
    ])

    if settings.get('fft_spikes_detector', False):
        # FFT spikes finder
        spikes_fft = pe.Node(niu.Function(
            input_names=['in_file'],
            output_names=['n_spikes', 'out_spikes', 'out_fft'],
            function=slice_wise_fft),
                             name='SpikesFinderFFT')

        workflow.connect([
            (inputnode, spikes_fft, [('orig', 'in_file')]),
            (spikes_fft, outputnode, [('out_spikes', 'out_spikes'),
                                      ('out_fft', 'out_fft')]),
            (spikes_fft, datasink, [('n_spikes', 'spikes_num')])
        ])

    return workflow