Пример #1
0
class DARTELExistingTemplateInputSpec(SPMCommandInputSpec):
    image_files = traits.List(traits.List(File(exists=True)),
                              desc="A list of files to be segmented",
                              field='warp1.images', copyfile=False, mandatory=True)
    regularization_form = traits.Enum('Linear', 'Membrane', 'Bending',
                                      field='warp1.settings.rform',
                                      desc='Form of regularization energy term')
    iteration_parameters = traits.List(traits.Tuple(traits.Range(1, 10),
                                                    traits.Tuple(traits.Float,
                                                                 traits.Float,
                                                                 traits.Float),
                                                    traits.Range(0, 9),
                                                    traits.File(exists=True)),
                                       minlen=3,
                                       maxlen=12,
                                       mandatory=True,
                                       field='warp1.settings.param',
                                       desc="""List of tuples for each iteration
                                       - Inner iterations
                                       - Regularization parameters
                                       - Time points for deformation model
                                       - DARTEL template
                                       """)
    optimization_parameters = traits.Tuple(traits.Float, traits.Range(1, 8),
                                           traits.Range(1, 8),
                                           field='warp1.settings.optim',
                                           desc="""Optimization settings a tuple
                                           - LM regularization
                                           - cycles of multigrid solver
                                           - relaxation iterations
                                           """)
Пример #2
0
class CoherenceAnalyzerInputSpec(BaseInterfaceInputSpec):

    #Input either csv file, or time-series object and use _xor_inputs to
    #discriminate
    _xor_inputs = ('in_file', 'in_TS')
    in_file = File(desc=('csv file with ROIs on the columns and '
                         'time-points on the rows. ROI names at the top row'),
                   exists=True,
                   requires=('TR', ))

    #If you gave just a file name, you need to specify the sampling_rate:
    TR = traits.Float(desc=('The TR used to collect the data'
                            'in your csv file <in_file>'))

    in_TS = traits.Any(desc='a nitime TimeSeries object')

    NFFT = traits.Range(
        low=32,
        value=64,
        usedefault=True,
        desc=('This is the size of the window used for '
              'the spectral estimation. Use values between '
              '32 and the number of samples in your time-series.'
              '(Defaults to 64.)'))
    n_overlap = traits.Range(
        low=0,
        value=0,
        usedefault=True,
        desc=('The number of samples which overlap'
              'between subsequent windows.(Defaults to 0)'))

    frequency_range = traits.List(value=[0.02, 0.15],
                                  usedefault=True,
                                  minlen=2,
                                  maxlen=2,
                                  desc=('The range of frequencies over'
                                        'which the analysis will average.'
                                        '[low,high] (Default [0.02,0.15]'))

    output_csv_file = File(
        desc=
        'File to write outputs (coherence,time-delay) with file-names: file_name_ {coherence,timedelay}'
    )

    output_figure_file = File(
        desc=
        'File to write output figures (coherence,time-delay) with file-names: file_name_{coherence,timedelay}. Possible formats: .png,.svg,.pdf,.jpg,...'
    )

    figure_type = traits.Enum('matrix',
                              'network',
                              usedefault=True,
                              desc=("The type of plot to generate, where "
                                    "'matrix' denotes a matrix image and"
                                    "'network' denotes a graph representation."
                                    " Default: 'matrix'"))
class triplanar_snapshotsInputSpec(BaseInterfaceInputSpec):
    imgfile = File(exists=True, desc='Image file', mandatory=True)
    bgimgfile = File(exists=True, desc='Background image file', mandatory=False)
    vmin = traits.Float(desc='vmin', mandatory=False)
    vmax = traits.Float(desc='vmax', mandatory=False)
    cmap = traits.String(desc='cmap', mandatory=False)
    alpha = traits.Range(low=0.0, high=1.0, desc='alpha', mandatory=False) # higher alpha means more bg visibility
    x = traits.Range(low=0, desc='x cut', mandatory=False)
    y = traits.Range(low=0, desc='y cut', mandatory=False)
    z = traits.Range(low=0, desc='z cut', mandatory=False)
Пример #4
0
class AIInputSpec(ANTSCommandInputSpec):
    dimension = traits.Int(3, usedefault=True, argstr='-d %d',
                           desc='dimension of output image')
    verbose = traits.Bool(False, usedefault=True, argstr='-v %d',
                          desc='enable verbosity')

    fixed_image = traits.File(
        exists=True, mandatory=True,
        desc='Image to which the moving_image should be transformed')
    moving_image = traits.File(
        exists=True, mandatory=True,
        desc='Image that will be transformed to fixed_image')

    fixed_image_mask = traits.File(
        exists=True, argstr='-x %s', desc='fixed mage mask')
    moving_image_mask = traits.File(
        exists=True, requires=['fixed_image_mask'],
        desc='moving mage mask')

    metric_trait = (
        traits.Enum("Mattes", "GC", "MI"),
        traits.Int(32),
        traits.Enum('Regular', 'Random', 'None'),
        traits.Range(value=0.2, low=0.0, high=1.0)
    )
    metric = traits.Tuple(*metric_trait, argstr='-m %s', mandatory=True,
                          desc='the metric(s) to use.')

    transform = traits.Tuple(
        traits.Enum('Affine', 'Rigid', 'Similarity'),
        traits.Range(value=0.1, low=0.0, exclude_low=True),
        argstr='-t %s[%f]', usedefault=True,
        desc='Several transform options are available')

    principal_axes = traits.Bool(False, usedefault=True, argstr='-p %d', xor=['blobs'],
                                 desc='align using principal axes')
    search_factor = traits.Tuple(
        traits.Float(20), traits.Range(value=0.12, low=0.0, high=1.0),
        usedefault=True, argstr='-s [%f,%f]', desc='search factor')

    search_grid = traits.Either(
        traits.Tuple(traits.Float, traits.Tuple(traits.Float, traits.Float, traits.Float)),
        traits.Tuple(traits.Float, traits.Tuple(traits.Float, traits.Float)),
        argstr='-g %s', desc='Translation search grid in mm')

    convergence = traits.Tuple(
        traits.Range(low=1, high=10000, value=10),
        traits.Float(1e-6),
        traits.Range(low=1, high=100, value=10),
        usedefault=True, argstr='-c [%d,%f,%d]', desc='convergence')

    output_transform = traits.File(
        'initialization.mat', usedefault=True, argstr='-o %s',
        desc='output file name')
Пример #5
0
class ApplySegmentationDeformationInput(SPMCommandInputSpec):

    deformation_field = File(
        exists=True,
        mandatory=True,
        field="comp{1}.def",
        desc="SPM Segmentation deformation file",
    )
    in_files = InputMultiPath(
        File(exists=True),
        mandatory=True,
        field="out{1}.pull.fnames",
        desc="Files on which deformation field is applied",
    )
    interpolation = traits.Range(
        low=0,
        high=7,
        field="out{1}.pull.interp",
        desc="degree of b-spline used for interpolation",
    )
    mask = traits.Int(0,
                      usedefault=True,
                      field="out{1}.pull.mask",
                      desc="image masking")
    fwhm = traits.List(
        traits.Float(0),
        field="out{1}.pull.fwhm",
        minlen=3,
        maxlen=3,
        desc="3-element list (opt)",
    )
class mosaicInputSpec(BaseInterfaceInputSpec):
    imgfile = File(exists=True, desc='Image file', mandatory=True)
    bgimgfile = File(exists=True, desc='Background image file', mandatory=False)
    vmin = traits.Float(desc='vmin')
    vmax = traits.Float(desc='vmax')
    cmap = traits.String(desc='cmap', mandatory=False)
    alpha = traits.Range(low=0.0, high=1.0, desc='alpha', mandatory=False) # higher alpha means more bg visibility
Пример #7
0
class _FixTraitFASTInputSpec(FASTInputSpec):
    bias_iters = traits.Range(
        low=0,
        high=10,
        argstr="-I %d",
        desc="number of main-loop iterations during bias-field removal",
    )
class ApplySegmentationDeformationInput(SPMCommandInputSpec):

    deformation_field = File(exists=True,
                             mandatory=True,
                             field='comp{1}.def',
                             desc='SPM Segmentation deformation file')
    in_files = InputMultiPath(
        File(exists=True),
        mandatory=True,
        field='out{1}.pull.fnames',
        desc='Files on which deformation field is applied')
    interpolation = traits.Range(
        low=0,
        high=7,
        field='out{1}.pull.interp',
        desc='degree of b-spline used for interpolation')
    mask = traits.Int(0,
                      usedefault=True,
                      field='out{1}.pull.mask',
                      desc='image masking')
    fwhm = traits.List(traits.Float(0),
                       field='out{1}.pull.fwhm',
                       minlen=3,
                       maxlen=3,
                       desc='3-element list (opt)')
Пример #9
0
class ApplyInverseDeformationInput(SPMCommandInputSpec):
    in_files = InputMultiPath(File(exists=True),
                              mandatory=True,
                              field='fnames',
                              desc='Files on which deformation is applied')
    target = File(exists=True,
                  field='comp{1}.inv.space',
                  desc='File defining target space')
    deformation = File(exists=True,
                       field='comp{1}.inv.comp{1}.sn2def.matname',
                       desc='SN SPM deformation file',
                       xor=['deformation_field'])
    deformation_field = File(exists=True,
                             field='comp{1}.inv.comp{1}.def',
                             desc='SN SPM deformation file',
                             xor=['deformation'])
    interpolation = traits.Range(
        low=0,
        hign=7,
        field='interp',
        desc='degree of b-spline used for interpolation')

    bounding_box = traits.List(traits.Float(),
                               field='comp{1}.inv.comp{1}.sn2def.bb',
                               minlen=6,
                               maxlen=6,
                               desc='6-element list (opt)')
    voxel_sizes = traits.List(traits.Float(),
                              field='comp{1}.inv.comp{1}.sn2def.vox',
                              minlen=3,
                              maxlen=3,
                              desc='3-element list (opt)')
Пример #10
0
class DofInputSpec(TraitedSpec):
    """ """
    in_file = File(exists=True, mandatory=True, desc="input file")
    out_file = File("dof", usedefault=True, desc="output file name")
    num_regressors = traits.Range(low=1,
                                  mandatory=True,
                                  desc="number of regressors")
Пример #11
0
class _SignalExtractionInputSpec(BaseInterfaceInputSpec):
    in_file = File(exists=True, mandatory=True, desc="4-D fMRI nii file")
    label_files = InputMultiPath(
        File(exists=True),
        mandatory=True,
        desc="a 3D label image, with 0 denoting "
        "background, or a list of 3D probability "
        "maps (one per label) or the equivalent 4D "
        "file.",
    )
    prob_thres = traits.Range(
        low=0.0,
        high=1.0,
        value=0.5,
        usedefault=True,
        desc="If label_files are probability masks, threshold "
        "at specified probability.",
    )
    class_labels = traits.List(
        mandatory=True,
        desc="Human-readable labels for each segment "
        "in the label file, in order. The length of "
        "class_labels must be equal to the number of "
        "segments (background excluded). This list "
        "corresponds to the class labels in label_file "
        "in ascending order",
    )
    out_file = File(
        "signals.tsv",
        usedefault=True,
        exists=False,
        desc="The name of the file to output to. "
        "signals.tsv by default",
    )
Пример #12
0
class _SignalExtractionInputSpec(BaseInterfaceInputSpec):
    in_file = File(exists=True, mandatory=True, desc='4-D fMRI nii file')
    label_files = InputMultiPath(File(exists=True),
                                 mandatory=True,
                                 desc='a 3D label image, with 0 denoting '
                                 'background, or a list of 3D probability '
                                 'maps (one per label) or the equivalent 4D '
                                 'file.')
    prob_thres = traits.Range(
        low=0.0,
        high=1.0,
        value=0.5,
        usedefault=True,
        desc='If label_files are probability masks, threshold '
        'at specified probability.')
    class_labels = traits.List(mandatory=True,
                               desc='Human-readable labels for each segment '
                               'in the label file, in order. The length of '
                               'class_labels must be equal to the number of '
                               'segments (background excluded). This list '
                               'corresponds to the class labels in label_file '
                               'in ascending order')
    out_file = File('signals.tsv',
                    usedefault=True,
                    exists=False,
                    desc='The name of the file to output to. '
                    'signals.tsv by default')
Пример #13
0
class MakeDofVolumeInputSpec(TraitedSpec):
    dof_file = traits.File(desc="", exists=True)
    cope_file = traits.File(desc="", exists=True)

    bold_file = traits.File(exists=True, desc="input file")
    num_regressors = traits.Range(low=1, desc="number of regressors")
    design = traits.File(desc="", exists=True)
Пример #14
0
class _BinaryDilationInputSpec(BaseInterfaceInputSpec):
    in_file = File(exists=True, mandatory=True, desc="binary file to dilate")
    radius = traits.Float(3,
                          usedefault=True,
                          desc="structure element (ball) radius")
    iterations = traits.Range(low=0,
                              value=1,
                              usedefault=True,
                              desc="repeat dilation")
Пример #15
0
class Label2VolInputSpec(FSTraitedSpec):
    label_file = InputMultiPath(File(exists=True), argstr='--label %s...',
                   xor=('label_file', 'annot_file', 'seg_file', 'aparc_aseg'),
                               copyfile=False,
                               mandatory=True,
                               desc='list of label files')
    annot_file = File(exists=True, argstr='--annot %s',
                     xor=('label_file', 'annot_file', 'seg_file', 'aparc_aseg'),
                     requires=('subject_id', 'hemi'),
                     mandatory=True,
                     copyfile=False,
                     desc='surface annotation file')
    seg_file = File(exists=True, argstr='--seg %s',
                   xor=('label_file', 'annot_file', 'seg_file', 'aparc_aseg'),
                   mandatory=True,
                   copyfile=False,
                   desc='segmentation file')
    aparc_aseg = traits.Bool(argstr='--aparc+aseg',
                            xor=('label_file', 'annot_file', 'seg_file', 'aparc_aseg'),
                            mandatory=True,
                            desc='use aparc+aseg.mgz in subjectdir as seg')
    template_file = File(exists=True, argstr='--temp %s', mandatory=True,
                    desc='output template volume')
    reg_file = File(exists=True, argstr='--reg %s',
                    xor=('reg_file', 'reg_header', 'identity'),
                    desc='tkregister style matrix VolXYZ = R*LabelXYZ')
    reg_header = File(exists=True, argstr='--regheader %s',
                      xor=('reg_file', 'reg_header', 'identity'),
                      desc='label template volume')
    identity = traits.Bool(argstr='--identity',
                           xor=('reg_file', 'reg_header', 'identity'),
                           desc='set R=I')
    invert_mtx = traits.Bool(argstr='--invertmtx',
                            desc='Invert the registration matrix')
    fill_thresh = traits.Range(0., 1., argstr='--fillthresh %.f',
                              desc='thresh : between 0 and 1')
    label_voxel_volume = traits.Float(argstr='--labvoxvol %f',
                             desc='volume of each label point (def 1mm3)')
    proj = traits.Tuple(traits.Enum('abs', 'frac'), traits.Float,
                        traits.Float, traits.Float,
                        argstr='--proj %s %f %f %f',
                        requries=('subject_id', 'hemi'),
                        desc='project along surface normal')
    subject_id = traits.Str(argstr='--subject %s',
                           desc='subject id')
    hemi = traits.Enum('lh', 'rh', argstr='--hemi %s',
                       desc='hemisphere to use lh or rh')
    surface = traits.Str(argstr='--surf %s',
                         desc='use surface instead of white')
    vol_label_file = File(argstr='--o %s', genfile=True,
                          desc='output volume')
    label_hit_file = File(argstr='--hits %s',
                           desc='file with each frame is nhits for a label')
    map_label_stat = File(argstr='--label-stat %s',
                    desc='map the label stats field into the vol')
    native_vox2ras = traits.Bool(argstr='--native-vox2ras',
               desc='use native vox2ras xform instead of  tkregister-style')
Пример #16
0
class _NonsteadyStatesDetectorInputSpec(BaseInterfaceInputSpec):
    in_file = File(exists=True, mandatory=True, desc="BOLD fMRI timeseries")
    nonnegative = traits.Bool(True,
                              usedefault=True,
                              desc="whether image voxels must be nonnegative")
    n_volumes = traits.Range(
        value=40,
        low=10,
        high=200,
        usedefault=True,
        desc="drop volumes in 4D image beyond this timepoint",
    )
    zero_dummy_masked = traits.Range(
        value=20,
        low=2,
        high=40,
        usedefault=True,
        desc=
        "number of timepoints to average when the number of dummies is zero")
Пример #17
0
class MeshFixInputSpec(CommandLineInputSpec):
    number_of_biggest_shells = traits.Int(argstr='--shells %d', desc="Only the N biggest shells are kept")

    epsilon_angle = traits.Range(argstr='-a %f', low=0.0, high=2.0, desc="Epsilon angle in degrees (must be between 0 and 2)")

    join_overlapping_largest_components = traits.Bool(argstr='-j', xor=['join_closest_components'], desc='Join 2 biggest components if they overlap, remove the rest.')

    join_closest_components = traits.Bool(argstr='-jc', xor=['join_closest_components'], desc='Join the closest pair of components.')

    quiet_mode = traits.Bool(argstr='-q', desc="Quiet mode, don't write much to stdout.")

    dont_clean = traits.Bool(argstr='--no-clean', desc="Don't Clean")

    save_as_stl = traits.Bool(xor= ['save_as_vmrl', 'save_as_freesurfer_mesh'], argstr='--stl', desc="Result is saved in stereolithographic format (.stl)")
    save_as_vmrl = traits.Bool(argstr='--wrl', xor= ['save_as_stl', 'save_as_freesurfer_mesh'], desc="Result is saved in VRML1.0 format (.wrl)")
    save_as_freesurfer_mesh = traits.Bool(argstr='--fsmesh', xor= ['save_as_vrml', 'save_as_stl'], desc="Result is saved in freesurfer mesh format")

    remove_handles = traits.Bool(argstr='--remove-handles', desc="Remove handles")

    uniform_remeshing_steps = traits.Int(argstr='-u %d', requires=['uniform_remeshing_vertices'], desc="Number of steps for uniform remeshing of the whole mesh")

    uniform_remeshing_vertices = traits.Int(argstr='--vertices %d', requires=['uniform_remeshing_steps'], desc="Constrains the number of vertices." \
	"Must be used with uniform_remeshing_steps")

    laplacian_smoothing_steps = traits.Int(argstr='--smooth %d', desc="The number of laplacian smoothing steps to apply")

    x_shift = traits.Int(argstr='--smooth %d', desc="Shifts the coordinates of the vertices when saving. Output must be in FreeSurfer format")

    # Cutting, decoupling, dilation
    cut_outer = traits.Int(argstr='--cut-outer %d', desc="Remove triangles of 1st that are outside of the 2nd shell.")
    cut_inner = traits.Int(argstr='--cut-inner %d', desc="Remove triangles of 1st that are inside of the 2nd shell. Dilate 2nd by N; Fill holes and keep only 1st afterwards.")
    decouple_inin = traits.Int(argstr='--decouple-inin %d', desc="Treat 1st file as inner, 2nd file as outer component." \
	"Resolve overlaps by moving inners triangles inwards. Constrain the min distance between the components > d.")
    decouple_outin = traits.Int(argstr='--decouple-outin %d', desc="Treat 1st file as outer, 2nd file as inner component." \
	"Resolve overlaps by moving outers triangles inwards. Constrain the min distance between the components > d.")
    decouple_outout = traits.Int(argstr='--decouple-outout %d', desc="Treat 1st file as outer, 2nd file as inner component." \
	"Resolve overlaps by moving outers triangles outwards. Constrain the min distance between the components > d.")

    finetuning_inwards = traits.Bool(argstr='--fineTuneIn ', requires=['finetuning_distance', 'finetuning_substeps'])
    finetuning_outwards = traits.Bool(argstr='--fineTuneIn ', requires=['finetuning_distance', 'finetuning_substeps'], xor=['finetuning_inwards'],
	desc = 'Similar to finetuning_inwards, but ensures minimal distance in the other direction')
    finetuning_distance = traits.Float(argstr='%f', requires=['finetuning_substeps'], desc="Used to fine-tune the minimal distance between surfaces." \
	"A minimal distance d is ensured, and reached in n substeps. When using the surfaces for subsequent volume meshing by gmsh, this step prevent too flat tetrahedra2)")
    finetuning_substeps = traits.Int(argstr='%d', requires=['finetuning_distance'], desc="Used to fine-tune the minimal distance between surfaces." \
	"A minimal distance d is ensured, and reached in n substeps. When using the surfaces for subsequent volume meshing by gmsh, this step prevent too flat tetrahedra2)")

    dilation = traits.Int(argstr='--dilate %d', desc="Dilate the surface by d. d < 0 means shrinking.")
    set_intersections_to_one = traits.Bool(argstr='--intersect', desc="If the mesh contains intersections, return value = 1." \
	"If saved in gmsh format, intersections will be highlighted.")

    in_file1 = File(exists=True, argstr="%s", position=1, mandatory=True)
    in_file2 = File(exists=True, argstr="%s", position=2)
    output_type = traits.Enum('off', ['stl', 'msh', 'wrl', 'vrml', 'fs', 'off'], usedefault=True, desc='The output type to save the file as.')
    out_filename = File(genfile=True, argstr="-o %s", desc='The output filename for the fixed mesh file')
Пример #18
0
class ResliceInputSpec(SPMCommandInputSpec):
    in_file = File(exists=True, mandatory=True,
                    desc='file to apply transform to, (only updates header)')
    space_defining = File(exists=True, mandatory=True,
                            desc='Volume defining space to slice in_file into')

    interp = traits.Range(low=0, high=7, usedefault=True,
                          desc='degree of b-spline used for interpolation'\
                          '0 is nearest neighbor (default)')

    out_file = File(desc='Optional file to save resliced volume')
Пример #19
0
class _FixHeaderRegistrationInputSpec(_RegistrationInputSpec):
    restrict_deformation = traits.List(
        traits.List(traits.Range(low=0.0, high=1.0)),
        desc=("This option allows the user to restrict the optimization of "
              "the displacement field, translation, rigid or affine transform "
              "on a per-component basis. For example, if one wants to limit "
              "the deformation or rotation of 3-D volume to the  first two "
              "dimensions, this is possible by specifying a weight vector of "
              "'1x1x0' for a deformation field or '1x1x0x1x1x0' for a rigid "
              "transformation.  Low-dimensional restriction only works if "
              "there are no preceding transformations."),
    )
class ThresholdGGMMInputSpec(TraitedSpec):
    stat_image = File(exists=True,
                      desc='stat images from a t-contrast',
                      copyfile=True,
                      mandatory=True)
    no_deactivation_class = traits.Bool(False, usedefault=True)
    mask_file = File(exists=True)
    models = traits.List()
    FNR_threshold = traits.Range(low=0.0,
                                 high=1.0,
                                 exclude_low=True,
                                 exclude_high=True)
Пример #21
0
class ResliceToFirstInputSpec(SPMCommandInputSpec):
    in_file = InputMultiPath(
        File(exists=True),
        mandatory=True,
        field='fnames',
        desc='files to apply transform to, (only updates header)')
    interp = traits.Range(low=0,
                          high=7,
                          usedefault=True,
                          desc='degree of b-spline used for interpolation'
                          '0 is nearest neighbor (default)')

    out_file = File(desc='Optional file to save resliced volume')
Пример #22
0
class XFibresInputSpec(FSLCommandInputSpec):
    dwi = File(exists=True, argstr="--data=%s", mandatory=True)
    mask = File(exists=True, argstr="--mask=%s", mandatory=True)
    gradnonlin = File(exists=True, argstr="--gradnonlin=%s")
    bvecs = File(exists=True, argstr="--bvecs=%s", mandatory=True)
    bvals = File(exists=True, argstr="--bvals=%s", mandatory=True)
    logdir = Directory("logdir", argstr="--logdir=%s", usedefault=True)
    n_fibres = traits.Range(
        low=1,
        argstr="--nfibres=%d",
        desc="Maximum nukmber of fibres to fit in each voxel")
    fudge = traits.Int(argstr="--fudge=%d", desc="ARD fudge factor")
    n_jumps = traits.Range(low=1,
                           argstr="--njumps=%d",
                           desc="Num of jumps to be made by MCMC")
    burn_in = traits.Range(
        low=0,
        argstr="--burnin=%d",
        desc="Total num of jumps at start of MCMC to be discarded")
    burn_in_no_ard = traits.Range(
        low=0,
        argstr="--burninnoard=%d",
        desc="num of burnin jumps before the ard is imposed")
    sample_every = traits.Range(low=0,
                                argstr="--sampleevery=%d",
                                desc="Num of jumps for each sample (MCMC)")
    update_proposal_every = traits.Range(
        low=1,
        argstr="--updateproposalevery=%d",
        desc="Num of jumps for each update to the proposal density std (MCMC)")
    seed = traits.Int(argstr="--seed=%d",
                      desc="seed for pseudo random number generator")
    model = traits.Int(argstr="--model=%d",
                       desc="Which model to use. \
1=mono-exponential (default and required for single shell). 2=continous \
exponential (for multi-shell experiments)")

    _xor_inputs1 = ('no_ard', 'all_ard')
    no_ard = traits.Bool(argstr="--noard",
                         desc="Turn ARD off on all fibres",
                         xor=_xor_inputs1)
    all_ard = traits.Bool(argstr="--allard",
                          desc="Turn ARD on on all fibres",
                          xor=_xor_inputs1)

    _xor_inputs2 = ('no_spat', 'non_linear')
    no_spat = traits.Bool(argstr="--nospat",
                          desc="Initialise with tensor, not spatially",
                          xor=_xor_inputs2)
    non_linear = traits.Bool(argstr="--nonlinear",
                             desc="Initialise with nonlinear fitting",
                             xor=_xor_inputs2)
    force_dir = traits.Bool(
        True,
        desc='use the actual directory name given - i.e. ' +
        'do not add + to make a new directory',
        argstr='--forcedir',
        usedefault=True)
Пример #23
0
class InfantReconAllInputSpec(CommandLineInputSpec):
    subjects_dir = Directory(
        exists=True,
        hash_files=False,
        desc="path to subjects directory",
    )
    subject_id = traits.Str(
        "recon_all",
        argstr="--subject %s",
        desc="subject name",
        required=True,
    )
    t1_file = File(
        exists=True,
        desc="path to T1w file",
    )
    age = traits.Range(
        low=0,
        high=24,
        argstr='--age %d',
        desc="Subject age in months",
    )
    outdir = Directory(
        argstr='--outdir %s',
        desc="Output directory where the reconall results are written."
        "The default location is <subjects_dir>/<subject_id>",
    )
    mask_file = traits.File(
        argstr='--masked %s',
        desc="Skull-stripped and INU-corrected T1 (skips skullstripping step)",
    )
    newborn = traits.Bool(
        xor=['age'],
        argstr='--newborn',
        help="Use newborns from set",
    )
    aseg_file = File(
        argstr='--segfile %s',
        desc="Pre-computed segmentation file",
    )
Пример #24
0
    def __init__(self):
        """Dedicated to the attributes initialisation/instanciation.
        
        The input and output plugs are defined here. The special
        'self.requirement' attribute (optional) is used to define the
        third-party products necessary for the running of the brick.
        """
        # initialisation of the objects needed for the launch of the brick
        super(Filter_Files_List, self).__init__()

        # Third party softwares required for the execution of the brick
        self.requirement = []  # no need of third party software!

        # Inputs description
        in_list_desc = 'The list of elements to be filtered.'
        index_filter_desc = 'A list of 0 to 2 indexes for filtering.'

        # Outputs description
        filtered_list_desc = 'The corresponding filtering result (a list).'

        # Inputs traits
        self.add_trait(
            "in_list", traits.List(traits.File,
                                   output=False,
                                   desc=in_list_desc))

        self.add_trait(
            "index_filter",
            traits.List(value=[1],
                        trait=traits.Range(low=1, high=None),
                        minlen=0,
                        maxlen=2,
                        output=False,
                        optional=True,
                        desc=index_filter_desc))

        # Outputs traits
        self.add_trait("filtered_list",
                       traits.List(output=True, desc=filtered_list_desc))
Пример #25
0
class SpecifySparseModelInputSpec(SpecifyModelInputSpec):
    time_acquisition = traits.Float(
        0,
        mandatory=True,
        desc="Time in seconds to acquire a single image volume")
    volumes_in_cluster = traits.Range(
        1, usedefault=True, desc="Number of scan volumes in a cluster")
    model_hrf = traits.Bool(desc="model sparse events with hrf")
    stimuli_as_impulses = traits.Bool(
        True, desc="Treat each stimulus to be impulse like.", usedefault=True)
    use_temporal_deriv = traits.Bool(
        requires=['model_hrf'],
        desc="Create a temporal derivative in addition to regular regressor")
    scale_regressors = traits.Bool(True,
                                   desc="Scale regressors by the peak",
                                   usedefault=True)
    scan_onset = traits.Float(
        0.0,
        desc="Start of scanning relative to onset of run in secs",
        usedefault=True)
    save_plot = traits.Bool(desc=('save plot of sparse design calculation '
                                  '(Requires matplotlib)'))
Пример #26
0
class ResliceToReferenceInput(SPMCommandInputSpec):
    in_files = InputMultiPath(
        File(exists=True), mandatory=True, field='fnames',
        desc='Files on which deformation is applied')
    target = File(
        exists=True,
        field='comp{1}.id.space',
        desc='File defining target space')
    interpolation = traits.Range(
        low=0, hign=7, field='interp',
        desc='degree of b-spline used for interpolation')

    bounding_box = traits.List(
        traits.Float(),
        field='comp{2}.idbbvox.bb',
        minlen=6, maxlen=6,
        desc='6-element list (opt)')
    voxel_sizes = traits.List(
        traits.Float(),
        field='comp{2}.idbbvox.vox',
        minlen=3, maxlen=3,
        desc='3-element list (opt)')
Пример #27
0
class mincANTSInput(ANTSCommandInputSpec):
    dimension = traits.Enum(3,
                            2,
                            argstr='--dimensionality %d',
                            usedefault=True,
                            desc='image dimension (2 or 3)')
    fixed_image = InputMultiPath(
        File(exists=True),
        mandatory=True,
        desc='Image to which the moving_image should be transformed'
        '(usually a structural image)')
    fixed_image_mask = File(
        exists=True,
        argstr='%s',
        max_ver='2.1.0',
        xor=['fixed_image_masks'],
        desc='Mask used to limit metric sampling region of the fixed image'
        'in all stages')
    fixed_image_masks = InputMultiPath(
        traits.Either('NULL', File(exists=True)),
        min_ver='2.2.0',
        xor=['fixed_image_mask'],
        desc=
        'Masks used to limit metric sampling region of the fixed image, defined per registration stage'
        '(Use "NULL" to omit a mask at a given stage)')
    moving_image = InputMultiPath(
        File(exists=True),
        mandatory=True,
        desc=
        'Image that will be registered to the space of fixed_image. This is the'
        'image on which the transformations will be applied to')
    moving_image_mask = File(
        exists=True,
        requires=['fixed_image_mask'],
        max_ver='2.1.0',
        xor=['moving_image_masks'],
        desc='mask used to limit metric sampling region of the moving image'
        'in all stages')
    moving_image_masks = InputMultiPath(
        traits.Either('NULL', File(exists=True)),
        min_ver='2.2.0',
        xor=['moving_image_mask'],
        desc=
        'Masks used to limit metric sampling region of the moving image, defined per registration stage'
        '(Use "NULL" to omit a mask at a given stage)')

    save_state = File(
        argstr='--save-state %s',
        exists=False,
        desc=
        'Filename for saving the internal restorable state of the registration'
    )
    restore_state = File(
        argstr='--restore-state %s',
        exists=True,
        desc=
        'Filename for restoring the internal restorable state of the registration'
    )

    initial_moving_transform = InputMultiPath(
        File(exists=True),
        argstr='%s',
        desc='A transform or a list of transforms that should be applied'
        'before the registration begins. Note that, when a list is given,'
        'the transformations are applied in reverse order.',
        xor=['initial_moving_transform_com'])
    invert_initial_moving_transform = InputMultiPath(
        traits.Bool(),
        requires=["initial_moving_transform"],
        desc='One boolean or a list of booleans that indicate'
        'whether the inverse(s) of the transform(s) defined'
        'in initial_moving_transform should be used.',
        xor=['initial_moving_transform_com'])

    initial_moving_transform_com = traits.Enum(
        0,
        1,
        2,
        argstr='%s',
        xor=['initial_moving_transform'],
        desc="Align the moving_image nad fixed_image befor registration using"
        "the geometric center of the images (=0), the image intensities (=1),"
        "or the origin of the images (=2)")
    metric_item_trait = traits.Enum("CC", "MeanSquares", "Demons", "GC", "MI",
                                    "Mattes")
    metric_stage_trait = traits.Either(metric_item_trait,
                                       traits.List(metric_item_trait))
    metric = traits.List(
        metric_stage_trait,
        mandatory=True,
        desc='the metric(s) to use for each stage. '
        'Note that multiple metrics per stage are not supported '
        'in ANTS 1.9.1 and earlier.')
    metric_weight_item_trait = traits.Float(1.0, usedefault=True)
    metric_weight_stage_trait = traits.Either(
        metric_weight_item_trait, traits.List(metric_weight_item_trait))
    metric_weight = traits.List(metric_weight_stage_trait,
                                value=[1.0],
                                usedefault=True,
                                requires=['metric'],
                                mandatory=True,
                                desc='the metric weight(s) for each stage. '
                                'The weights must sum to 1 per stage.')
    radius_bins_item_trait = traits.Int(5, usedefault=True)
    radius_bins_stage_trait = traits.Either(
        radius_bins_item_trait, traits.List(radius_bins_item_trait))
    radius_or_number_of_bins = traits.List(
        radius_bins_stage_trait,
        value=[5],
        usedefault=True,
        requires=['metric_weight'],
        desc='the number of bins in each stage for the MI and Mattes metric, '
        'the radius for other metrics')
    sampling_strategy_item_trait = traits.Enum("None", "Regular", "Random",
                                               None)
    sampling_strategy_stage_trait = traits.Either(
        sampling_strategy_item_trait,
        traits.List(sampling_strategy_item_trait))
    sampling_strategy = traits.List(
        trait=sampling_strategy_stage_trait,
        requires=['metric_weight'],
        desc='the metric sampling strategy (strategies) for each stage')
    sampling_percentage_item_trait = traits.Either(
        traits.Range(low=0.0, high=1.0), None)
    sampling_percentage_stage_trait = traits.Either(
        sampling_percentage_item_trait,
        traits.List(sampling_percentage_item_trait))
    sampling_percentage = traits.List(
        trait=sampling_percentage_stage_trait,
        requires=['sampling_strategy'],
        desc="the metric sampling percentage(s) to use for each stage")
    use_estimate_learning_rate_once = traits.List(traits.Bool(), desc='')
    use_histogram_matching = traits.Either(
        traits.Bool,
        traits.List(traits.Bool(argstr='%s')),
        default=True,
        usedefault=True,
        desc='Histogram match the images before registration.')
    interpolation = traits.Enum('Linear',
                                'NearestNeighbor',
                                'CosineWindowedSinc',
                                'WelchWindowedSinc',
                                'HammingWindowedSinc',
                                'LanczosWindowedSinc',
                                'BSpline',
                                'MultiLabel',
                                'Gaussian',
                                argstr='%s',
                                usedefault=True)
    interpolation_parameters = traits.Either(
        traits.Tuple(traits.Int()),  # BSpline (order)
        traits.Tuple(
            traits.Float(),  # Gaussian/MultiLabel (sigma, alpha)
            traits.Float()))

    write_composite_transform = traits.Bool(
        argstr='--write-composite-transform %d',
        default_value=False,
        usedefault=True,
        desc='')
    collapse_output_transforms = traits.Bool(
        argstr='--collapse-output-transforms %d',
        default_value=True,
        usedefault=True,  # This should be true for explicit completeness
        desc=('Collapse output transforms. Specifically, enabling this option '
              'combines all adjacent linear transforms and composes all '
              'adjacent displacement field transforms before writing the '
              'results to disk.'))

    initialize_transforms_per_stage = traits.Bool(
        argstr='--initialize-transforms-per-stage %d',
        default_value=False,
        usedefault=True,  # This should be true for explicit completeness
        desc=
        ('Initialize linear transforms from the previous stage. By enabling this option, '
         'the current linear stage transform is directly intialized from the previous '
         'stages linear transform; this allows multiple linear stages to be run where '
         'each stage directly updates the estimated linear transform from the previous '
         'stage. (e.g. Translation -> Rigid -> Affine). '))
    # NOTE: Even though only 0=False and 1=True are allowed, ants uses integer
    # values instead of booleans
    float = traits.Bool(argstr='--float %d',
                        default_value=False,
                        desc='Use float instead of double for computations.')

    transforms = traits.List(traits.Enum(
        'Rigid', 'Affine', 'CompositeAffine', 'Similarity', 'Translation',
        'BSpline', 'GaussianDisplacementField', 'TimeVaryingVelocityField',
        'TimeVaryingBSplineVelocityField', 'SyN', 'BSplineSyN', 'Exponential',
        'BSplineExponential'),
                             argstr='%s',
                             mandatory=True)
    # TODO: input checking and allow defaults
    # All parameters must be specified for BSplineDisplacementField, TimeVaryingBSplineVelocityField, BSplineSyN,
    # Exponential, and BSplineExponential. EVEN DEFAULTS!
    transform_parameters = traits.List(
        traits.Either(
            traits.Tuple(traits.Float()),  # Translation, Rigid, Affine,
            # CompositeAffine, Similarity
            traits.Tuple(
                traits.Float(),  # GaussianDisplacementField, SyN
                traits.Float(),
                traits.Float()),
            traits.Tuple(
                traits.Float(),  # BSplineSyn,
                traits.Int(),  # BSplineDisplacementField,
                traits.Int(),  # TimeVaryingBSplineVelocityField
                traits.Int()),
            traits.Tuple(
                traits.Float(),  # TimeVaryingVelocityField
                traits.Int(),
                traits.Float(),
                traits.Float(),
                traits.Float(),
                traits.Float()),
            traits.Tuple(
                traits.Float(),  # Exponential
                traits.Float(),
                traits.Float(),
                traits.Int()),
            traits.Tuple(
                traits.Float(),  # BSplineExponential
                traits.Int(),
                traits.Int(),
                traits.Int(),
                traits.Int()),
        ))
    restrict_deformation = traits.List(
        traits.List(traits.Enum(0, 1)),
        desc=("This option allows the user to restrict the optimization of "
              "the displacement field, translation, rigid or affine transform "
              "on a per-component basis. For example, if one wants to limit "
              "the deformation or rotation of 3-D volume to the  first two "
              "dimensions, this is possible by specifying a weight vector of "
              "'1x1x0' for a deformation field or '1x1x0x1x1x0' for a rigid "
              "transformation.  Low-dimensional restriction only works if "
              "there are no preceding transformations."))
    # Convergence flags
    number_of_iterations = traits.List(traits.List(traits.Int()))
    smoothing_sigmas = traits.List(traits.List(traits.Float()), mandatory=True)
    sigma_units = traits.List(traits.Enum('mm', 'vox'),
                              requires=['smoothing_sigmas'],
                              desc="units for smoothing sigmas")
    shrink_factors = traits.List(traits.List(traits.Int()), mandatory=True)
    convergence_threshold = traits.List(trait=traits.Float(),
                                        value=[1e-6],
                                        minlen=1,
                                        requires=['number_of_iterations'],
                                        usedefault=True)
    convergence_window_size = traits.List(trait=traits.Int(),
                                          value=[10],
                                          minlen=1,
                                          requires=['convergence_threshold'],
                                          usedefault=True)
    # Output flags
    output_transform_prefix = traits.Str("transform",
                                         usedefault=True,
                                         argstr="%s",
                                         desc="")
    output_warped_image = traits.Either(traits.Bool,
                                        File(),
                                        hash_files=False,
                                        desc="")
    output_inverse_warped_image = traits.Either(
        traits.Bool,
        File(),
        hash_files=False,
        requires=['output_warped_image'],
        desc="")
    winsorize_upper_quantile = traits.Range(
        low=0.0,
        high=1.0,
        value=1.0,
        argstr='%s',
        usedefault=True,
        desc="The Upper quantile to clip image ranges")
    winsorize_lower_quantile = traits.Range(
        low=0.0,
        high=1.0,
        value=0.0,
        argstr='%s',
        usedefault=True,
        desc="The Lower quantile to clip image ranges")

    verbose = traits.Bool(argstr='-v', default_value=False, usedefault=True)

    out_file = File(argstr="%s", position=-1, desc="image to operate on")
    in_file = File(exists=True, argstr="%s", position=-2, desc="PET file")
Пример #28
0
class GLMFitInputSpec(FSTraitedSpec):
    glm_dir = traits.Str(argstr='--glmdir %s',
                         desc='save outputs to dir',
                         genfile=True)
    in_file = File(desc='input 4D file',
                   argstr='--y %s',
                   mandatory=True,
                   copyfile=False)
    _design_xor = ('fsgd', 'design', 'one_sample')
    fsgd = traits.Tuple(File(exists=True),
                        traits.Enum('doss', 'dods'),
                        argstr='--fsgd %s %s',
                        xor=_design_xor,
                        desc='freesurfer descriptor file')
    design = File(exists=True,
                  argstr='--X %s',
                  xor=_design_xor,
                  desc='design matrix file')
    contrast = InputMultiPath(File(exists=True),
                              argstr='--C %s...',
                              desc='contrast file')

    one_sample = traits.Bool(
        argstr='--osgm',
        xor=('one_sample', 'fsgd', 'design', 'contrast'),
        desc='construct X and C as a one-sample group mean')
    no_contrast_sok = traits.Bool(argstr='--no-contrasts-ok',
                                  desc='do not fail if no contrasts specified')
    per_voxel_reg = InputMultiPath(File(exists=True),
                                   argstr='--pvr %s...',
                                   desc='per-voxel regressors')
    self_reg = traits.Tuple(traits.Int,
                            traits.Int,
                            traits.Int,
                            argstr='--selfreg %d %d %d',
                            desc='self-regressor from index col row slice')
    weighted_ls = File(exists=True,
                       argstr='--wls %s',
                       xor=('weight_file', 'weight_inv', 'weight_sqrt'),
                       desc='weighted least squares')
    fixed_fx_var = File(exists=True,
                        argstr='--yffxvar %s',
                        desc='for fixed effects analysis')
    fixed_fx_dof = traits.Int(argstr='--ffxdof %d',
                              xor=['fixed_fx_dof_file'],
                              desc='dof for fixed effects analysis')
    fixed_fx_dof_file = File(
        argstr='--ffxdofdat %d',
        xor=['fixed_fx_dof'],
        desc='text file with dof for fixed effects analysis')
    weight_file = File(exists=True,
                       xor=['weighted_ls'],
                       desc='weight for each input at each voxel')
    weight_inv = traits.Bool(argstr='--w-inv',
                             desc='invert weights',
                             xor=['weighted_ls'])
    weight_sqrt = traits.Bool(argstr='--w-sqrt',
                              desc='sqrt of weights',
                              xor=['weighted_ls'])
    fwhm = traits.Range(low=0.0,
                        argstr='--fwhm %f',
                        desc='smooth input by fwhm')
    var_fwhm = traits.Range(low=0.0,
                            argstr='--var-fwhm %f',
                            desc='smooth variance by fwhm')
    no_mask_smooth = traits.Bool(argstr='--no-mask-smooth',
                                 desc='do not mask when smoothing')
    no_est_fwhm = traits.Bool(argstr='--no-est-fwhm',
                              desc='turn off FWHM output estimation')
    mask_file = File(exists=True, argstr='--mask %s', desc='binary mask')
    label_file = File(exists=True,
                      argstr='--label %s',
                      xor=['cortex'],
                      desc='use label as mask, surfaces only')
    cortex = traits.Bool(argstr='--cortex',
                         xor=['label_file'],
                         desc='use subjects ?h.cortex.label as label')
    invert_mask = traits.Bool(argstr='--mask-inv', desc='invert mask')
    prune = traits.Bool(
        argstr='--prune',
        desc=
        'remove voxels that do not have a non-zero value at each frame (def)')
    no_prune = traits.Bool(argstr='--no-prune',
                           xor=['prunethresh'],
                           desc='do not prune')
    prune_thresh = traits.Float(argstr='--prune_thr %f',
                                xor=['noprune'],
                                desc='prune threshold. Default is FLT_MIN')
    compute_log_y = traits.Bool(
        argstr='--logy', desc='compute natural log of y prior to analysis')
    save_estimate = traits.Bool(argstr='--yhat-save',
                                desc='save signal estimate (yhat)')
    save_residual = traits.Bool(argstr='--eres-save',
                                desc='save residual error (eres)')
    save_res_corr_mtx = traits.Bool(
        argstr='--eres-scm',
        desc='save residual error spatial correlation matrix (eres.scm). Big!')
    surf = traits.Bool(argstr="--surf %s %s %s",
                       requires=["subject_id", "hemi"],
                       desc="analysis is on a surface mesh")
    subject_id = traits.Str(desc="subject id for surface geometry")
    hemi = traits.Enum("lh", "rh", desc="surface hemisphere")
    surf_geo = traits.Str("white",
                          usedefault=True,
                          desc="surface geometry name (e.g. white, pial)")
    simulation = traits.Tuple(traits.Enum('perm', 'mc-full', 'mc-z'),
                              traits.Int(min=1),
                              traits.Float,
                              traits.Str,
                              argstr='--sim %s %d %f %s',
                              desc='nulltype nsim thresh csdbasename')
    sim_sign = traits.Enum('abs',
                           'pos',
                           'neg',
                           argstr='--sim-sign %s',
                           desc='abs, pos, or neg')
    uniform = traits.Tuple(traits.Float,
                           traits.Float,
                           argstr='--uniform %f %f',
                           desc='use uniform distribution instead of gaussian')
    pca = traits.Bool(argstr='--pca',
                      desc='perform pca/svd analysis on residual')
    calc_AR1 = traits.Bool(argstr='--tar1',
                           desc='compute and save temporal AR1 of residual')
    save_cond = traits.Bool(
        argstr='--save-cond',
        desc='flag to save design matrix condition at each voxel')
    vox_dump = traits.Tuple(traits.Int,
                            traits.Int,
                            traits.Int,
                            argstr='--voxdump %d %d %d',
                            desc='dump voxel GLM and exit')
    seed = traits.Int(argstr='--seed %d', desc='used for synthesizing noise')
    synth = traits.Bool(argstr='--synth', desc='replace input with gaussian')
    resynth_test = traits.Int(argstr='--resynthtest %d',
                              desc='test GLM by resynthsis')
    profile = traits.Int(argstr='--profile %d', desc='niters : test speed')
    force_perm = traits.Bool(
        argstr='--perm-force',
        desc='force perumtation test, even when design matrix is not orthog')
    diag = traits.Int('--diag %d', desc='Gdiag_no : set diagnositc level')
    diag_cluster = traits.Bool(
        argstr='--diag-cluster',
        desc='save sig volume and exit from first sim loop')
    debug = traits.Bool(argstr='--debug', desc='turn on debugging')
    check_opts = traits.Bool(
        argstr='--checkopts',
        desc="don't run anything, just check options and exit")
    allow_repeated_subjects = traits.Bool(
        argstr='--allowsubjrep',
        desc=
        'allow subject names to repeat in the fsgd file (must appear before --fsgd'
    )
    allow_ill_cond = traits.Bool(argstr='--illcond',
                                 desc='allow ill-conditioned design matrices')
    sim_done_file = File(argstr='--sim-done %s',
                         desc='create file when simulation finished')
Пример #29
0
class InterceptOnlyDesignInputSpec(TraitedSpec):
    n_copes = traits.Range(low=1, desc="number of inputs")
Пример #30
0
class MBISInputSpec(CommandLineInputSpec):
    in_files = InputMultiPath( File(exists=True), copyfile=False,
                            desc='image, or multi-channel set of images, ' \
                                'to be segmented',
                            argstr='-C %s', position=-1, mandatory=True )

    mask = File(exists=True, desc='binary mask file', argstr='-x %s')

    mask_auto = traits.Bool(desc='channels are implicitly masked', argstr='-M')

    out_prefix = File(
        'outpath',
        desc='base name of output files',
        argstr='-o %s',
        genfile=True)  # uses in_file name as basename if none given

    number_classes = traits.Range(low=2,
                                  high=10,
                                  argstr='-n %d',
                                  desc='number of tissue-type classes',
                                  value=3)

    output_steps = traits.Bool(desc='output intermediate steps',
                               argstr='--output-steps')

    output_biasfield = traits.Bool(desc='output estimated bias field',
                                   argstr='--bias-output')

    output_biascorrected = traits.Bool(desc='output restored image ' \
                                           '(bias-corrected image)',
                                       argstr='--bias-corrected-output')

    output_stats = File('outcsvfile',
                        desc='output file containing mixture parameters',
                        argstr='--output-stats %s')

    probability_maps = traits.Bool(desc='outputs a separate binary image for each ' \
                               'tissue type',
                           argstr='-g', value=True )

    priors = InputMultiPath(File(exist=True),
                            desc='initialize with prior images',
                            argstr='-P %s',
                            minlen=3,
                            maxlen=10)

    no_bias = traits.Bool(desc='do not remove bias field',
                          argstr='--bias-skip',
                          value=True)
    em_iters = traits.Range(low=1,
                            high=50,
                            value=3,
                            desc='number of EM iterations',
                            argstr='--em-iterations %d')
    mrf_iters = traits.Range(low=1,
                             high=10,
                             desc='number of MRF iterations',
                             argstr='--mrf-iterations %d')

    mrf_lambda = traits.Range(
        low=0.01,
        high=1.0,
        desc='MRF lambda parameter (segmentation spatial smoothness)',
        argstr='-l %.3f')

    manual_init = File(exists=True,
                       desc='Filename containing intensities',
                       argstr='-f %s')
    manual_init_means = File(exists=True,
                             desc='Filename containing intensities',
                             argstr='--init-means %s')