Пример #1
0
def rs_grouplevel(z, prefix, output_dir, work_dir):

    from nipype.interfaces.fsl.model import Randomise
    from nipype.interfaces import fsl as fsl


    merger = fsl.utils.Merge()
    merger.inputs.in_files = z
    merger.inputs.dimension = 't'
    merger.inputs.merged_file = op.join(work_dir, 'z_merge.nii.gz')
    merger.run()

    immaths = fsl.utils.ImageMaths()
    immaths.inputs.in_file = op.join(work_dir, 'z_merge.nii.gz')
    immaths.inputs.op_string = "-abs -bin -Tmin"
    immaths.inputs.out_file = op.join(work_dir, 'mask.nii.gz')
    immaths.run()

    masker = fsl.maths.ApplyMask()
    masker.inputs.in_file = op.join(work_dir, 'z_merge.nii.gz')
    masker.inputs.mask_file = op.join(work_dir, 'mask.nii.gz')
    masker.inputs.out_file = op.join(work_dir, 'z_merge.nii.gz')
    masker.run()

    meaner = fsl.utils.ImageMaths()
    meaner.inputs.in_file = op.join(work_dir, 'z_merge.nii.gz')
    meaner.inputs.op_string = "-Tmean"
    meaner.inputs.out_file = op.join(work_dir, 'z.nii.gz')
    meaner.run()
    shutil.copyfile(op.join(work_dir, 'z.nii.gz'), op.join(output_dir, '{prefix}_z.nii.gz'.format(prefix=prefix)))

    randomise = Randomise()
    randomise.inputs.in_file = op.join(work_dir, 'z_merge.nii.gz')
    randomise.inputs.mask = op.join(work_dir, 'mask.nii.gz')
    randomise.inputs.one_sample_group_mean = True
    randomise.inputs.raw_stats_imgs = True
    randomise.inputs.vox_p_values = True
    randomise.inputs.base_name = 'randomise'
    os.chdir(work_dir)
    randomise.run()

    thresher = fsl.utils.ImageMaths()
    thresher.inputs.in_file = op.join(work_dir, 'randomise_vox_corrp_tstat1.nii.gz')
    thresher.inputs.op_string = "-thr 0.999"
    thresher.inputs.out_file = op.join(work_dir, 'randomise_vox_corrp_tstat1_thr001.nii.gz')
    thresher.run()

    masker = fsl.maths.ApplyMask()
    masker.inputs.in_file = op.join(work_dir, 'randomise_tstat1.nii.gz')
    masker.inputs.mask_file = op.join(work_dir, 'randomise_vox_corrp_tstat1_thr001.nii.gz')
    masker.inputs.out_file = op.join(work_dir, 'randomise_tstat1_thr001.nii.gz')
    masker.run()

    #copy data to directory vox_corrp_tstat1.nii.gz
    shutil.copyfile(op.join(work_dir, 'randomise_tstat1.nii.gz'), op.join(output_dir, '{prefix}_tstat1.nii.gz'.format(prefix=prefix)))
    shutil.copyfile(op.join(work_dir, 'randomise_vox_corrp_tstat1.nii.gz'), op.join(output_dir, '{prefix}_vox_corrp.nii.gz'.format(prefix=prefix)))
    shutil.copyfile(op.join(work_dir, 'randomise_tstat1_thr001.nii.gz'), op.join(output_dir, '{prefix}_tstat1_thr001.nii.gz'.format(prefix=prefix)))

    shutil.rmtree(work_dir)
Пример #2
0
def test_Randomise_inputs():
    input_map = dict(
        args=dict(argstr='%s', ),
        base_name=dict(
            argstr='-o "%s"',
            position=1,
            usedefault=True,
        ),
        c_thresh=dict(argstr='-c %.2f', ),
        cm_thresh=dict(argstr='-C %.2f', ),
        demean=dict(argstr='-D', ),
        design_mat=dict(
            argstr='-d %s',
            position=2,
        ),
        environ=dict(
            nohash=True,
            usedefault=True,
        ),
        f_c_thresh=dict(argstr='-F %.2f', ),
        f_cm_thresh=dict(argstr='-S %.2f', ),
        f_only=dict(argstr='--f_only', ),
        fcon=dict(argstr='-f %s', ),
        ignore_exception=dict(
            nohash=True,
            usedefault=True,
        ),
        in_file=dict(
            argstr='-i %s',
            mandatory=True,
            position=0,
        ),
        mask=dict(argstr='-m %s', ),
        num_perm=dict(argstr='-n %d', ),
        one_sample_group_mean=dict(argstr='-1', ),
        output_type=dict(),
        p_vec_n_dist_files=dict(argstr='-P', ),
        raw_stats_imgs=dict(argstr='-R', ),
        seed=dict(argstr='--seed=%d', ),
        show_info_parallel_mode=dict(argstr='-Q', ),
        show_total_perms=dict(argstr='-q', ),
        tcon=dict(
            argstr='-t %s',
            position=3,
        ),
        terminal_output=dict(nohash=True, ),
        tfce=dict(argstr='-T', ),
        tfce2D=dict(argstr='--T2', ),
        tfce_C=dict(argstr='--tfce_C=%.2f', ),
        tfce_E=dict(argstr='--tfce_E=%.2f', ),
        tfce_H=dict(argstr='--tfce_H=%.2f', ),
        var_smooth=dict(argstr='-v %d', ),
        vox_p_values=dict(argstr='-x', ),
        x_block_labels=dict(argstr='-e %s', ),
    )
    inputs = Randomise.input_spec()

    for key, metadata in input_map.items():
        for metakey, value in metadata.items():
            yield assert_equal, getattr(inputs.traits()[key], metakey), value
Пример #3
0
def test_Randomise_outputs():
    output_map = dict(tstat_files=dict(),
    t_p_files=dict(),
    f_p_files=dict(),
    f_corrected_p_files=dict(),
    t_corrected_p_files=dict(),
    fstat_files=dict(),
    )
    outputs = Randomise.output_spec()

    for key, metadata in output_map.items():
        for metakey, value in metadata.items():
            yield assert_equal, getattr(outputs.traits()[key], metakey), value
Пример #4
0
def test_Randomise_outputs():
    output_map = dict(
        f_corrected_p_files=dict(),
        f_p_files=dict(),
        fstat_files=dict(),
        t_corrected_p_files=dict(),
        t_p_files=dict(),
        tstat_files=dict(),
    )
    outputs = Randomise.output_spec()

    for key, metadata in output_map.items():
        for metakey, value in metadata.items():
            yield assert_equal, getattr(outputs.traits()[key], metakey), value
Пример #5
0
def test_Randomise_inputs():
    input_map = dict(
        args=dict(argstr="%s"),
        base_name=dict(argstr='-o "%s"', position=1, usedefault=True),
        c_thresh=dict(argstr="-c %.2f"),
        cm_thresh=dict(argstr="-C %.2f"),
        demean=dict(argstr="-D"),
        design_mat=dict(argstr="-d %s", position=2),
        environ=dict(nohash=True, usedefault=True),
        f_c_thresh=dict(argstr="-F %.2f"),
        f_cm_thresh=dict(argstr="-S %.2f"),
        f_only=dict(argstr="--f_only"),
        fcon=dict(argstr="-f %s"),
        ignore_exception=dict(nohash=True, usedefault=True),
        in_file=dict(argstr="-i %s", mandatory=True, position=0),
        mask=dict(argstr="-m %s"),
        num_perm=dict(argstr="-n %d"),
        one_sample_group_mean=dict(argstr="-1"),
        output_type=dict(),
        p_vec_n_dist_files=dict(argstr="-P"),
        raw_stats_imgs=dict(argstr="-R"),
        seed=dict(argstr="--seed=%d"),
        show_info_parallel_mode=dict(argstr="-Q"),
        show_total_perms=dict(argstr="-q"),
        tcon=dict(argstr="-t %s", position=3),
        terminal_output=dict(nohash=True),
        tfce=dict(argstr="-T"),
        tfce2D=dict(argstr="--T2"),
        tfce_C=dict(argstr="--tfce_C=%.2f"),
        tfce_E=dict(argstr="--tfce_E=%.2f"),
        tfce_H=dict(argstr="--tfce_H=%.2f"),
        var_smooth=dict(argstr="-v %d"),
        vox_p_values=dict(argstr="-x"),
        x_block_labels=dict(argstr="-e %s"),
    )
    inputs = Randomise.input_spec()

    for key, metadata in input_map.items():
        for metakey, value in metadata.items():
            yield assert_equal, getattr(inputs.traits()[key], metakey), value
Пример #6
0
                               base_directory=output_dir,
                               template='glm_seed_copes/%s_*/cope.nii',
                               field_template=templates,
                               template_args=dict(roi=[['roi']])),
                   name='datagrabber')

# In[ ]:

## Level 2

# merge param estimates across all subjects per seed
merge = Node(Merge(dimension='t'), name='merge')

# FSL randomise for higher level analysis
highermodel = Node(Randomise(tfce=True,
                             raw_stats_imgs=True,
                             design_mat=group_mat,
                             tcon=group_con),
                   name='highermodel')

## Cluster results

# make binary masks of sig clusters
binarize = Node(Binarize(min=0.95, max=1.0),
                name='binarize',
                iterfield='in_file')

# mask T-map before clustering
mask_tmaps = Node(ApplyMask(), name='mask_tmaps')

# clusterize and extract cluster stats/peaks
clusterize = Node(Cluster(threshold=2.3,
Пример #7
0
def test_Randomise_inputs():
    input_map = dict(one_sample_group_mean=dict(argstr='-1',
    ),
    vox_p_values=dict(argstr='-x',
    ),
    show_total_perms=dict(argstr='-q',
    ),
    tfce2D=dict(argstr='--T2',
    ),
    tfce_H=dict(argstr='--tfce_H=%.2f',
    ),
    p_vec_n_dist_files=dict(argstr='-P',
    ),
    cm_thresh=dict(argstr='-C %.2f',
    ),
    f_only=dict(argstr='--f_only',
    ),
    environ=dict(nohash=True,
    usedefault=True,
    ),
    in_file=dict(position=0,
    mandatory=True,
    argstr='-i %s',
    ),
    ignore_exception=dict(nohash=True,
    usedefault=True,
    ),
    f_cm_thresh=dict(argstr='-S %.2f',
    ),
    tfce=dict(argstr='-T',
    ),
    tfce_E=dict(argstr='--tfce_E=%.2f',
    ),
    args=dict(argstr='%s',
    ),
    tfce_C=dict(argstr='--tfce_C=%.2f',
    ),
    raw_stats_imgs=dict(argstr='-R',
    ),
    terminal_output=dict(mandatory=True,
    nohash=True,
    ),
    var_smooth=dict(argstr='-v %d',
    ),
    design_mat=dict(position=2,
    argstr='-d %s',
    ),
    tcon=dict(position=3,
    argstr='-t %s',
    ),
    show_info_parallel_mode=dict(argstr='-Q',
    ),
    base_name=dict(position=1,
    usedefault=True,
    argstr='-o "%s"',
    ),
    f_c_thresh=dict(argstr='-F %.2f',
    ),
    num_perm=dict(argstr='-n %d',
    ),
    mask=dict(argstr='-m %s',
    ),
    c_thresh=dict(argstr='-c %.2f',
    ),
    x_block_labels=dict(argstr='-e %s',
    ),
    seed=dict(argstr='--seed=%d',
    ),
    demean=dict(argstr='-D',
    ),
    output_type=dict(),
    fcon=dict(argstr='-f %s',
    ),
    )
    inputs = Randomise.input_spec()

    for key, metadata in input_map.items():
        for metakey, value in metadata.items():
            yield assert_equal, getattr(inputs.traits()[key], metakey), value