def test_DARTELNorm2MNI_outputs(): output_map = dict(normalization_parameter_file=dict(), normalized_files=dict(), ) outputs = DARTELNorm2MNI.output_spec() for key, metadata in output_map.items(): for metakey, value in metadata.items(): yield assert_equal, getattr(outputs.traits()[key], metakey), value
def test_DARTELNorm2MNI_outputs(): output_map = dict( normalization_parameter_file=dict(), normalized_files=dict(), ) outputs = DARTELNorm2MNI.output_spec() for key, metadata in output_map.items(): for metakey, value in metadata.items(): yield assert_equal, getattr(outputs.traits()[key], metakey), value
def test_DARTELNorm2MNI_inputs(): input_map = dict( apply_to_files=dict( copyfile=False, field='mni_norm.data.subjs.images', mandatory=True, ), bounding_box=dict(field='mni_norm.bb', ), flowfield_files=dict( field='mni_norm.data.subjs.flowfields', mandatory=True, ), fwhm=dict(field='mni_norm.fwhm', ), ignore_exception=dict( nohash=True, usedefault=True, ), matlab_cmd=dict(), mfile=dict(usedefault=True, ), modulate=dict(field='mni_norm.preserve', ), paths=dict(), template_file=dict( copyfile=False, field='mni_norm.template', mandatory=True, ), use_mcr=dict(), use_v8struct=dict( min_ver='8', usedefault=True, ), voxel_size=dict(field='mni_norm.vox', ), ) inputs = DARTELNorm2MNI.input_spec() for key, metadata in input_map.items(): for metakey, value in metadata.items(): yield assert_equal, getattr(inputs.traits()[key], metakey), value
def test_DARTELNorm2MNI_inputs(): input_map = dict(apply_to_files=dict(copyfile=False, field='mni_norm.data.subjs.images', mandatory=True, ), bounding_box=dict(field='mni_norm.bb', ), flowfield_files=dict(field='mni_norm.data.subjs.flowfields', mandatory=True, ), fwhm=dict(field='mni_norm.fwhm', ), ignore_exception=dict(nohash=True, usedefault=True, ), matlab_cmd=dict(), mfile=dict(usedefault=True, ), modulate=dict(field='mni_norm.preserve', ), paths=dict(), template_file=dict(copyfile=False, field='mni_norm.template', mandatory=True, ), use_mcr=dict(), use_v8struct=dict(min_ver='8', usedefault=True, ), voxel_size=dict(field='mni_norm.vox', ), ) inputs = DARTELNorm2MNI.input_spec() for key, metadata in input_map.items(): for metakey, value in metadata.items(): yield assert_equal, getattr(inputs.traits()[key], metakey), value