Пример #1
0
def test_read_paradigm():
    """ test that a paradigm is correctly read
    """
    import tempfile
    tmpdir = tempfile.mkdtemp()
    for paradigm in (block_paradigm(), modulated_event_paradigm(),
                     modulated_block_paradigm(), basic_paradigm()):
        csvfile = write_paradigm(paradigm, tmpdir)
        read_paradigm = paradigm_from_csv(csvfile)
        assert_true((read_paradigm['onset'] == paradigm['onset']).all())
Пример #2
0
def test_read_paradigm():
    """ test that a paradigm is correctly read
    """
    import tempfile

    tmpdir = tempfile.mkdtemp()
    for paradigm in (block_paradigm(), modulated_event_paradigm(), modulated_block_paradigm(), basic_paradigm()):
        csvfile = write_paradigm(paradigm, tmpdir)
        read_paradigm = paradigm_from_csv(csvfile)
        assert_true((read_paradigm["onset"] == paradigm["onset"]).all())
# This is just a flag to be able to use the same script for the plotting
if False:
    for study in studies:
        voxel_fn = op.join(folder, study + '.npy')
        # Paradigm file
        paradigm_fn = op.join(folder0, 'onsets.csv')
        ########################################################################
        # Load data and parameters
        n_scans = 144
        t_r = 3.
        ys = np.load(voxel_fn)

        # Create design matrix
        frametimes = np.arange(0, n_scans * t_r, t_r)
        paradigm = experimental_paradigm.paradigm_from_csv(paradigm_fn)
        dm = design_matrix.make_design_matrix(frametimes, paradigm=paradigm)
        modulation = np.array(paradigm)[:, 4]

        # GP parameters
        time_offset = 10
        gamma = 10.
        fmin_max_iter = 50
        n_restarts_optimizer = 10
        n_iter = 3
        normalize_y = False
        optimize = True
        zeros_extremes = True

        # Estimation
        gp = SuperDuperGP(hrf_length=hrf_length, t_r=t_r, oversampling=1./dt,
Пример #4
0
        'func BOLD': 'nipype_mem/*Smooth/*/swrvismot1*.nii'
    })
func_file = preprocessed_heroes['func BOLD'][0]
anat_file = preprocessed_heroes['anat'][0]

# Give the path to the paradigm
heroes = datasets.load_heroes_dataset(
    subjects=subjects,
    subjects_parent_directory=os.path.join(
        os.path.expanduser('~/procasl_data'), 'heroes'),
    paths_patterns={'paradigm': 'paradigms/acquisition1/*BOLD*1b.csv'})
paradigm_file = heroes['paradigm'][0]

# Read the paradigm
from nistats import experimental_paradigm
paradigm = experimental_paradigm.paradigm_from_csv(paradigm_file)

# Create the design matrix
import numpy as np
import matplotlib.pyplot as plt
import nibabel
from nistats.design_matrix import make_design_matrix, plot_design_matrix
tr = 2.5
n_scans = nibabel.load(func_file).get_data().shape[-1]
frametimes = np.arange(0, n_scans * tr, tr)
design_matrix = make_design_matrix(frametimes, paradigm)
plot_design_matrix(design_matrix)
plt.tight_layout()

# Fit GLM
print('Fitting a GLM')