Пример #1
0
def init_3dQwarp_wf(omp_nthreads=1, debug=False, name="pepolar_estimate_wf"):
    """
    Create the PEPOLAR field estimation workflow based on AFNI's ``3dQwarp``.

    This workflow takes in two EPI files that MUST have opposed
    :abbr:`PE (phase-encoding)` direction.
    Therefore, EPIs with orthogonal PE directions are not supported.

    Workflow Graph
        .. workflow ::
            :graph2use: orig
            :simple_form: yes

            from sdcflows.workflows.fit.pepolar import init_3dQwarp_wf
            wf = init_3dQwarp_wf()

    Parameters
    ----------
    debug : :obj:`bool`
        Whether a fast configuration of topup (less accurate) should be applied.
    name : :obj:`str`
        Name for this workflow
    omp_nthreads : :obj:`int`
        Parallelize internal tasks across the number of CPUs given by this option.

    Inputs
    ------
    in_data : :obj:`list` of :obj:`str`
        A list of two EPI files, the first of which will be taken as reference.

    Outputs
    -------
    fmap : :obj:`str`
        The path of the estimated fieldmap.
    fmap_ref : :obj:`str`
        The path of an unwarped conversion of the first element of ``in_data``.

    """
    from nipype.interfaces import afni
    from niworkflows.interfaces.header import CopyHeader
    from niworkflows.interfaces.fixes import (
        FixHeaderRegistration as Registration,
        FixHeaderApplyTransforms as ApplyTransforms,
    )
    from niworkflows.interfaces.freesurfer import StructuralReference
    from niworkflows.func.util import init_enhance_and_skullstrip_bold_wf
    from ...utils.misc import front as _front, last as _last
    from ...interfaces.utils import Flatten, ConvertWarp

    workflow = Workflow(name=name)
    workflow.__desc__ = f"""{_PEPOLAR_DESC} \
with `3dQwarp` (@afni; AFNI {''.join(['%02d' % v for v in afni.Info().version() or []])}).
"""

    inputnode = pe.Node(niu.IdentityInterface(fields=["in_data", "metadata"]),
                        name="inputnode")

    outputnode = pe.Node(niu.IdentityInterface(fields=["fmap", "fmap_ref"]),
                         name="outputnode")

    flatten = pe.Node(Flatten(), name="flatten")
    sort_pe = pe.Node(
        niu.Function(function=_sorted_pe,
                     output_names=["sorted", "qwarp_args"]),
        name="sort_pe",
        run_without_submitting=True,
    )

    merge_pes = pe.MapNode(
        StructuralReference(
            auto_detect_sensitivity=True,
            initial_timepoint=1,
            fixed_timepoint=True,  # Align to first image
            intensity_scaling=True,
            # 7-DOF (rigid + intensity)
            no_iteration=True,
            subsample_threshold=200,
            out_file="template.nii.gz",
        ),
        name="merge_pes",
        iterfield=["in_files"],
    )

    pe0_wf = init_enhance_and_skullstrip_bold_wf(omp_nthreads=omp_nthreads,
                                                 name="pe0_wf")
    pe1_wf = init_enhance_and_skullstrip_bold_wf(omp_nthreads=omp_nthreads,
                                                 name="pe1_wf")

    align_pes = pe.Node(
        Registration(
            from_file=_pkg_fname("sdcflows", "data/translation_rigid.json"),
            output_warped_image=True,
        ),
        name="align_pes",
        n_procs=omp_nthreads,
    )

    qwarp = pe.Node(
        afni.QwarpPlusMinus(
            blur=[-1, -1],
            environ={"OMP_NUM_THREADS": f"{min(omp_nthreads, 4)}"},
            minpatch=9,
            nopadWARP=True,
            noweight=True,
            pblur=[0.05, 0.05],
        ),
        name="qwarp",
        n_procs=min(omp_nthreads, 4),
    )

    to_ants = pe.Node(ConvertWarp(), name="to_ants", mem_gb=0.01)

    cphdr_warp = pe.Node(CopyHeader(), name="cphdr_warp", mem_gb=0.01)

    unwarp_reference = pe.Node(
        ApplyTransforms(
            dimension=3,
            float=True,
            interpolation="LanczosWindowedSinc",
        ),
        name="unwarp_reference",
    )

    # fmt: off
    workflow.connect([
        (inputnode, flatten, [("in_data", "in_data"),
                              ("metadata", "in_meta")]),
        (flatten, sort_pe, [("out_list", "inlist")]),
        (sort_pe, qwarp, [("qwarp_args", "args")]),
        (sort_pe, merge_pes, [("sorted", "in_files")]),
        (merge_pes, pe0_wf, [(("out_file", _front), "inputnode.in_file")]),
        (merge_pes, pe1_wf, [(("out_file", _last), "inputnode.in_file")]),
        (pe0_wf, align_pes, [("outputnode.skull_stripped_file", "fixed_image")
                             ]),
        (pe1_wf, align_pes, [("outputnode.skull_stripped_file", "moving_image")
                             ]),
        (pe0_wf, qwarp, [("outputnode.skull_stripped_file", "in_file")]),
        (align_pes, qwarp, [("warped_image", "base_file")]),
        (inputnode, cphdr_warp, [(("in_data", _front), "hdr_file")]),
        (qwarp, cphdr_warp, [("source_warp", "in_file")]),
        (cphdr_warp, to_ants, [("out_file", "in_file")]),
        (to_ants, unwarp_reference, [("out_file", "transforms")]),
        (inputnode, unwarp_reference, [("in_reference", "reference_image"),
                                       ("in_reference", "input_image")]),
        (unwarp_reference, outputnode, [("output_image", "fmap_ref")]),
        (to_ants, outputnode, [("out_file", "fmap")]),
    ])
    # fmt: on
    return workflow
Пример #2
0
def init_prepare_epi_wf(omp_nthreads, matched_pe=False, name="prepare_epi_wf"):
    """
    Prepare opposed-PE EPI images for PE-POLAR SDC.

    This workflow takes in a set of EPI files and returns two 3D volumes with
    matching and opposed PE directions, ready to be used in field distortion
    estimation.

    The procedure involves: estimating a robust template using FreeSurfer's
    ``mri_robust_template``, bias field correction using ANTs ``N4BiasFieldCorrection``
    and AFNI ``3dUnifize``, skullstripping using FSL BET and AFNI ``3dAutomask``,
    and rigid coregistration to the reference using ANTs.

    .. workflow ::
        :graph2use: orig
        :simple_form: yes

        from sdcflows.workflows.pepolar import init_prepare_epi_wf
        wf = init_prepare_epi_wf(omp_nthreads=8)


    **Parameters**:

        matched_pe : bool
            Whether the input ``fmaps_epi`` will contain images with matched
            PE blips or not. Please use :func:`sdcflows.workflows.pepolar.check_pes`
            to determine whether they exist or not.
        name : str
            Name for this workflow
        omp_nthreads : int
            Parallelize internal tasks across the number of CPUs given by this option.

    **Inputs**:

        epi_pe : str
            Phase-encoding direction of the EPI image to be corrected.
        maps_pe : list of tuple(pathlike, str)
            list of 3D or 4D NIfTI images
        ref_brain
            coregistration reference (skullstripped and bias field corrected)

    **Outputs**:

        opposed_pe : pathlike
            single 3D NIfTI file
        matched_pe : pathlike
            single 3D NIfTI file


    """
    inputnode = pe.Node(
        niu.IdentityInterface(fields=['epi_pe', 'maps_pe', 'ref_brain']),
        name='inputnode')

    outputnode = pe.Node(
        niu.IdentityInterface(fields=['opposed_pe', 'matched_pe']),
        name='outputnode')

    ants_settings = pkgr.resource_filename('sdcflows',
                                           'data/translation_rigid.json')

    split = pe.Node(niu.Function(function=_split_epi_lists), name='split')

    merge_op = pe.Node(
        StructuralReference(
            auto_detect_sensitivity=True,
            initial_timepoint=1,
            fixed_timepoint=True,  # Align to first image
            intensity_scaling=True,
            # 7-DOF (rigid + intensity)
            no_iteration=True,
            subsample_threshold=200,
            out_file='template.nii.gz'),
        name='merge_op')

    ref_op_wf = init_enhance_and_skullstrip_bold_wf(omp_nthreads=omp_nthreads,
                                                    name='ref_op_wf')

    op2ref_reg = pe.Node(ants.Registration(from_file=ants_settings,
                                           output_warped_image=True),
                         name='op2ref_reg',
                         n_procs=omp_nthreads)

    workflow = Workflow(name=name)
    workflow.connect([
        (inputnode, split, [('maps_pe', 'in_files'), ('epi_pe', 'pe_dir')]),
        (split, merge_op, [(('out', _front), 'in_files')]),
        (merge_op, ref_op_wf, [('out_file', 'inputnode.in_file')]),
        (ref_op_wf, op2ref_reg, [('outputnode.skull_stripped_file',
                                  'moving_image')]),
        (inputnode, op2ref_reg, [('ref_brain', 'fixed_image')]),
        (op2ref_reg, outputnode, [('warped_image', 'opposed_pe')]),
    ])

    if not matched_pe:
        workflow.connect([
            (inputnode, outputnode, [('ref_brain', 'matched_pe')]),
        ])
        return workflow

    merge_ma = pe.Node(
        StructuralReference(
            auto_detect_sensitivity=True,
            initial_timepoint=1,
            fixed_timepoint=True,  # Align to first image
            intensity_scaling=True,
            # 7-DOF (rigid + intensity)
            no_iteration=True,
            subsample_threshold=200,
            out_file='template.nii.gz'),
        name='merge_ma')

    ref_ma_wf = init_enhance_and_skullstrip_bold_wf(omp_nthreads=omp_nthreads,
                                                    name='ref_ma_wf')

    ma2ref_reg = pe.Node(ants.Registration(from_file=ants_settings,
                                           output_warped_image=True),
                         name='ma2ref_reg',
                         n_procs=omp_nthreads)

    workflow.connect([
        (split, merge_ma, [(('out', _last), 'in_files')]),
        (merge_ma, ref_ma_wf, [('out_file', 'inputnode.in_file')]),
        (ref_ma_wf, ma2ref_reg, [('outputnode.skull_stripped_file',
                                  'moving_image')]),
        (inputnode, ma2ref_reg, [('ref_brain', 'fixed_image')]),
        (ma2ref_reg, outputnode, [('warped_image', 'matched_pe')]),
    ])
    return workflow
Пример #3
0
def init_anat_average_wf(
    *,
    bspline_fitting_distance=200,
    longitudinal=False,
    name="anat_average_wf",
    num_maps=1,
    omp_nthreads=None,
    sloppy=False,
):
    """
    Create an average from several images of the same modality.

    Each image undergoes a clipping step, removing background noise and
    high-intensity outliers, which is required by INU correction with the
    N4 algorithm.
    Then INU correction is performed for each of the inputs and the range
    of the image clipped again to fit within uint8.
    Finally, each image is reoriented to have RAS+ data matrix and, if
    more than one inputs, aligned and averaged with FreeSurfer's
    ``mri_robust_template``.

    Parameters
    ----------
    bspline_fitting_distance : :obj:`float`
        Distance in mm between B-Spline control points for N4 INU estimation.
    longitudinal : :obj:`bool`
        Whether an unbiased middle point should be calculated.
    name : :obj:`str`
        This particular workflow's unique name (Nipype requirement).
    num_maps : :obj:`int`
        Then number of input 3D volumes to be averaged.
    omp_nthreads : :obj:`int`
        The number of threads for individual processes in this workflow.
    sloppy : :obj:`bool`
        Run in *sloppy* mode.

    Inputs
    ------
    in_files : :obj:`list`
        A list of one or more input files. They can be 3D or 4D.

    Outputs
    -------
    out_file : :obj:`str`
        The output averaged reference file.
    valid_list : :obj:`list`
        A list of accepted/discarded volumes from the input list.
    realign_xfms : :obj:`list`
        List of rigid-body transformation matrices that bring every volume
        into alignment with the average reference.
    out_report : :obj:`str`
        Path to a reportlet summarizing what happened in this workflow.

    """
    from pkg_resources import resource_filename as pkgr
    from nipype.interfaces.ants import N4BiasFieldCorrection
    from nipype.interfaces.image import Reorient

    from niworkflows.engine.workflows import LiterateWorkflow as Workflow
    from niworkflows.interfaces.header import ValidateImage
    from niworkflows.interfaces.nibabel import IntensityClip, SplitSeries
    from niworkflows.interfaces.freesurfer import (
        StructuralReference,
        PatchedLTAConvert as LTAConvert,
    )
    from niworkflows.interfaces.images import TemplateDimensions, Conform
    from niworkflows.interfaces.nitransforms import ConcatenateXFMs
    from niworkflows.utils.misc import add_suffix

    wf = Workflow(name=name)

    inputnode = pe.Node(niu.IdentityInterface(fields=["in_files"]),
                        name="inputnode")
    outputnode = pe.Node(
        niu.IdentityInterface(
            fields=["out_file", "valid_list", "realign_xfms", "out_report"]),
        name="outputnode",
    )

    # 1. Validate each of the input images
    validate = pe.MapNode(
        ValidateImage(),
        iterfield="in_file",
        name="validate",
        run_without_submitting=True,
    )

    # 2. Ensure we don't have two timepoints and implicitly squeeze image
    split = pe.MapNode(SplitSeries(), iterfield="in_file", name="split")

    # 3. INU correction of all independent volumes
    clip_preinu = pe.MapNode(IntensityClip(p_min=50),
                             iterfield="in_file",
                             name="clip_preinu")
    correct_inu = pe.MapNode(
        N4BiasFieldCorrection(
            dimension=3,
            save_bias=False,
            copy_header=True,
            n_iterations=[50] * (5 - 2 * sloppy),
            convergence_threshold=1e-7,
            shrink_factor=4,
            bspline_fitting_distance=bspline_fitting_distance,
        ),
        iterfield="input_image",
        n_procs=omp_nthreads,
        name="correct_inu",
    )
    clip_postinu = pe.MapNode(IntensityClip(p_min=10.0, p_max=99.5),
                              iterfield="in_file",
                              name="clip_postinu")

    # 4. Reorient T2w image(s) to RAS and resample to common voxel space
    ref_dimensions = pe.Node(TemplateDimensions(), name="ref_dimensions")
    conform = pe.MapNode(Conform(), iterfield="in_file", name="conform")
    # fmt:off
    wf.connect([
        (inputnode, ref_dimensions, [("in_files", "t1w_list")]),
        (inputnode, validate, [("in_files", "in_file")]),
        (validate, split, [("out_file", "in_file")]),
        (split, clip_preinu, [(("out_files", _flatten), "in_file")]),
        (clip_preinu, correct_inu, [("out_file", "input_image")]),
        (correct_inu, clip_postinu, [("output_image", "in_file")]),
        (ref_dimensions, conform, [("t1w_valid_list", "in_file"),
                                   ("target_zooms", "target_zooms"),
                                   ("target_shape", "target_shape")]),
        (ref_dimensions, outputnode, [("out_report", "out_report"),
                                      ("t1w_valid_list", "valid_list")]),
    ])
    # fmt:on

    # 5. Reorient template to RAS, if needed (mri_robust_template may set to LIA)
    ensure_ras = pe.Node(Reorient(), name="ensure_ras")

    if num_maps == 1:
        get1st = pe.Node(niu.Select(index=[0]), name="get1st")
        outputnode.inputs.realign_xfms = [
            pkgr("smriprep", "data/itkIdentityTransform.txt")
        ]
        # fmt:off
        wf.connect([
            (conform, get1st, [("out_file", "inlist")]),
            (get1st, ensure_ras, [("out", "in_file")]),
            (ensure_ras, outputnode, [("out_file", "out_file")]),
        ])
        # fmt:on
        return wf

    from nipype.interfaces import freesurfer as fs

    wf.__desc__ = f"""\
An anatomical reference-map was computed after registration of
{num_maps} images (after INU-correction) using
`mri_robust_template` [FreeSurfer {fs.Info().looseversion() or "<ver>"}, @fs_template].
"""

    conform_xfm = pe.MapNode(
        LTAConvert(in_lta="identity.nofile", out_lta=True),
        iterfield=["source_file", "target_file"],
        name="conform_xfm",
    )

    # 6. StructuralReference is fs.RobustTemplate if > 1 volume, copying otherwise
    merge = pe.Node(
        StructuralReference(
            auto_detect_sensitivity=True,
            initial_timepoint=1,  # For deterministic behavior
            intensity_scaling=True,  # 7-DOF (rigid + intensity)
            subsample_threshold=200,
            fixed_timepoint=not longitudinal,
            no_iteration=not longitudinal,
            transform_outputs=True,
        ),
        mem_gb=2 * num_maps - 1,
        name="merge",
    )

    # 7. Final intensity equalization/conformation
    clip_final = pe.Node(IntensityClip(p_min=2.0, p_max=99.9),
                         name="clip_final")

    merge_xfm = pe.MapNode(
        niu.Merge(2),
        name="merge_xfm",
        iterfield=["in1", "in2"],
        run_without_submitting=True,
    )
    concat_xfms = pe.MapNode(
        ConcatenateXFMs(inverse=True),
        name="concat_xfms",
        iterfield=["in_xfms"],
        run_without_submitting=True,
    )

    def _set_threads(in_list, maximum):
        return min(len(in_list), maximum)

    # fmt:off
    wf.connect([
        (ref_dimensions, conform_xfm, [("t1w_valid_list", "source_file")]),
        (conform, conform_xfm, [("out_file", "target_file")]),
        (conform, merge,
         [("out_file", "in_files"),
          (("out_file", _set_threads, omp_nthreads), "num_threads"),
          (("out_file", add_suffix, "_template"), "out_file")]),
        (merge, ensure_ras, [("out_file", "in_file")]),
        # Combine orientation and template transforms
        (conform_xfm, merge_xfm, [("out_lta", "in1")]),
        (merge, merge_xfm, [("transform_outputs", "in2")]),
        (merge_xfm, concat_xfms, [("out", "in_xfms")]),
        # Output
        (ensure_ras, clip_final, [("out_file", "in_file")]),
        (clip_final, outputnode, [("out_file", "out_file")]),
        (concat_xfms, outputnode, [("out_xfm", "realign_xfms")]),
    ])
    # fmt:on

    return wf
Пример #4
0
def init_anat_template_wf(longitudinal,
                          omp_nthreads,
                          num_t1w,
                          name='anat_template_wf'):
    """
    Generate a canonically-oriented, structural average from all input T1w images.

    Workflow Graph
        .. workflow::
            :graph2use: orig
            :simple_form: yes

            from smriprep.workflows.anatomical import init_anat_template_wf
            wf = init_anat_template_wf(
                longitudinal=False, omp_nthreads=1, num_t1w=1)

    Parameters
    ----------
    longitudinal : bool
        Create unbiased structural average, regardless of number of inputs
        (may increase runtime)
    omp_nthreads : int
        Maximum number of threads an individual process may use
    num_t1w : int
        Number of T1w images
    name : str, optional
        Workflow name (default: anat_template_wf)

    Inputs
    ------
    t1w
        List of T1-weighted structural images

    Outputs
    -------
    t1w_ref
        Structural reference averaging input T1w images, defining the T1w space.
    t1w_realign_xfm
        List of affine transforms to realign input T1w images
    out_report
        Conformation report

    """
    workflow = Workflow(name=name)

    if num_t1w > 1:
        workflow.__desc__ = """\
A T1w-reference map was computed after registration of
{num_t1w} T1w images (after INU-correction) using
`mri_robust_template` [FreeSurfer {fs_ver}, @fs_template].
""".format(num_t1w=num_t1w, fs_ver=fs.Info().looseversion() or '<ver>')

    inputnode = pe.Node(niu.IdentityInterface(fields=['t1w']),
                        name='inputnode')
    outputnode = pe.Node(niu.IdentityInterface(
        fields=['t1w_ref', 't1w_valid_list', 't1w_realign_xfm', 'out_report']),
                         name='outputnode')

    # 0. Reorient T1w image(s) to RAS and resample to common voxel space
    t1w_ref_dimensions = pe.Node(TemplateDimensions(),
                                 name='t1w_ref_dimensions')
    t1w_conform = pe.MapNode(Conform(),
                             iterfield='in_file',
                             name='t1w_conform')

    workflow.connect([
        (inputnode, t1w_ref_dimensions, [('t1w', 't1w_list')]),
        (t1w_ref_dimensions, t1w_conform, [('t1w_valid_list', 'in_file'),
                                           ('target_zooms', 'target_zooms'),
                                           ('target_shape', 'target_shape')]),
        (t1w_ref_dimensions, outputnode, [('out_report', 'out_report'),
                                          ('t1w_valid_list', 't1w_valid_list')
                                          ]),
    ])

    if num_t1w == 1:
        get1st = pe.Node(niu.Select(index=[0]), name='get1st')
        outputnode.inputs.t1w_realign_xfm = [
            pkgr('smriprep', 'data/itkIdentityTransform.txt')
        ]

        workflow.connect([
            (t1w_conform, get1st, [('out_file', 'inlist')]),
            (get1st, outputnode, [('out', 't1w_ref')]),
        ])

        return workflow

    t1w_conform_xfm = pe.MapNode(LTAConvert(in_lta='identity.nofile',
                                            out_lta=True),
                                 iterfield=['source_file', 'target_file'],
                                 name='t1w_conform_xfm')

    # 1. Template (only if several T1w images)
    # 1a. Correct for bias field: the bias field is an additive factor
    #     in log-transformed intensity units. Therefore, it is not a linear
    #     combination of fields and N4 fails with merged images.
    # 1b. Align and merge if several T1w images are provided
    n4_correct = pe.MapNode(N4BiasFieldCorrection(dimension=3,
                                                  copy_header=True),
                            iterfield='input_image',
                            name='n4_correct',
                            n_procs=1)  # n_procs=1 for reproducibility
    # StructuralReference is fs.RobustTemplate if > 1 volume, copying otherwise
    t1w_merge = pe.Node(
        StructuralReference(
            auto_detect_sensitivity=True,
            initial_timepoint=1,  # For deterministic behavior
            intensity_scaling=True,  # 7-DOF (rigid + intensity)
            subsample_threshold=200,
            fixed_timepoint=not longitudinal,
            no_iteration=not longitudinal,
            transform_outputs=True,
        ),
        mem_gb=2 * num_t1w - 1,
        name='t1w_merge')

    # 2. Reorient template to RAS, if needed (mri_robust_template may set to LIA)
    t1w_reorient = pe.Node(image.Reorient(), name='t1w_reorient')

    concat_affines = pe.MapNode(ConcatenateLTA(out_type='RAS2RAS',
                                               invert_out=True),
                                iterfield=['in_lta1', 'in_lta2'],
                                name='concat_affines')

    lta_to_itk = pe.MapNode(LTAConvert(out_itk=True),
                            iterfield=['in_lta'],
                            name='lta_to_itk')

    def _set_threads(in_list, maximum):
        return min(len(in_list), maximum)

    workflow.connect([
        (t1w_ref_dimensions, t1w_conform_xfm, [('t1w_valid_list',
                                                'source_file')]),
        (t1w_conform, t1w_conform_xfm, [('out_file', 'target_file')]),
        (t1w_conform, n4_correct, [('out_file', 'input_image')]),
        (t1w_conform, t1w_merge,
         [(('out_file', _set_threads, omp_nthreads), 'num_threads'),
          (('out_file', add_suffix, '_template'), 'out_file')]),
        (n4_correct, t1w_merge, [('output_image', 'in_files')]),
        (t1w_merge, t1w_reorient, [('out_file', 'in_file')]),
        # Combine orientation and template transforms
        (t1w_conform_xfm, concat_affines, [('out_lta', 'in_lta1')]),
        (t1w_merge, concat_affines, [('transform_outputs', 'in_lta2')]),
        (concat_affines, lta_to_itk, [('out_file', 'in_lta')]),
        # Output
        (t1w_reorient, outputnode, [('out_file', 't1w_ref')]),
        (lta_to_itk, outputnode, [('out_itk', 't1w_realign_xfm')]),
    ])

    return workflow
Пример #5
0
def init_prepare_epi_wf(omp_nthreads, name="prepare_epi_wf"):
    """
    This workflow takes in a set of EPI files with with the same phase
    encoding direction and returns a single 3D volume ready to be used in
    field distortion estimation.

    The procedure involves: estimating a robust template using FreeSurfer's
    'mri_robust_template', bias field correction using ANTs N4BiasFieldCorrection
    and AFNI 3dUnifize, skullstripping using FSL BET and AFNI 3dAutomask,
    and rigid coregistration to the reference using ANTs.

    .. workflow ::
        :graph2use: orig
        :simple_form: yes

        from fmriprep.workflows.fieldmap.pepolar import init_prepare_epi_wf
        wf = init_prepare_epi_wf(omp_nthreads=8)


    Inputs

        fmaps
            list of 3D or 4D NIfTI images
        ref_brain
            coregistration reference (skullstripped and bias field corrected)

    Outputs

        out_file
            single 3D NIfTI file

    """
    inputnode = pe.Node(niu.IdentityInterface(fields=['fmaps', 'ref_brain']),
                        name='inputnode')

    outputnode = pe.Node(niu.IdentityInterface(fields=['out_file']),
                         name='outputnode')

    split = pe.MapNode(fsl.Split(dimension='t'), iterfield='in_file',
                       name='split')

    merge = pe.Node(
        StructuralReference(auto_detect_sensitivity=True,
                            initial_timepoint=1,
                            fixed_timepoint=True,  # Align to first image
                            intensity_scaling=True,
                            # 7-DOF (rigid + intensity)
                            no_iteration=True,
                            subsample_threshold=200,
                            out_file='template.nii.gz'),
        name='merge')

    enhance_and_skullstrip_bold_wf = init_enhance_and_skullstrip_bold_wf(
        omp_nthreads=omp_nthreads)

    ants_settings = pkgr.resource_filename('fmriprep',
                                           'data/translation_rigid.json')
    fmap2ref_reg = pe.Node(ants.Registration(from_file=ants_settings,
                                             output_warped_image=True),
                           name='fmap2ref_reg', n_procs=omp_nthreads)

    workflow = Workflow(name=name)

    def _flatten(l):
        from nipype.utils.filemanip import filename_to_list
        return [item for sublist in l for item in filename_to_list(sublist)]

    workflow.connect([
        (inputnode, split, [('fmaps', 'in_file')]),
        (split, merge, [(('out_files', _flatten), 'in_files')]),
        (merge, enhance_and_skullstrip_bold_wf, [('out_file', 'inputnode.in_file')]),
        (enhance_and_skullstrip_bold_wf, fmap2ref_reg, [
            ('outputnode.skull_stripped_file', 'moving_image')]),
        (inputnode, fmap2ref_reg, [('ref_brain', 'fixed_image')]),
        (fmap2ref_reg, outputnode, [('warped_image', 'out_file')]),
    ])

    return workflow
Пример #6
0
def init_t2w_template_wf(longitudinal,
                         omp_nthreads,
                         num_t2w,
                         name="anat_t2w_template_wf"):
    """
    Adapts :py:func:`~smriprep.workflows.anatomical.init_anat_template_wf` for T2w image reference
    """
    from pkg_resources import resource_filename as pkgr
    from nipype.interfaces import freesurfer as fs, image, ants
    from niworkflows.engine.workflows import LiterateWorkflow as Workflow
    from niworkflows.interfaces.freesurfer import (
        StructuralReference,
        PatchedLTAConvert as LTAConvert,
    )
    from niworkflows.interfaces.images import TemplateDimensions, Conform, ValidateImage
    from niworkflows.interfaces.nitransforms import ConcatenateXFMs
    from niworkflows.utils.misc import add_suffix

    wf = Workflow(name=name)

    inputnode = pe.Node(niu.IdentityInterface(fields=["t2w"]),
                        name="inputnode")
    outputnode = pe.Node(
        niu.IdentityInterface(fields=[
            "t2w_ref", "t2w_valid_list", "t2_realign_xfm", "out_report"
        ]),
        name="outputnode",
    )

    # 0. Reorient T2w image(s) to RAS and resample to common voxel space
    t2w_ref_dimensions = pe.Node(TemplateDimensions(),
                                 name='t2w_ref_dimensions')
    t2w_conform = pe.MapNode(Conform(),
                             iterfield='in_file',
                             name='t2w_conform')

    wf.connect([
        (inputnode, t2w_ref_dimensions, [('t2w', 't1w_list')]),
        (t2w_ref_dimensions, t2w_conform, [('t1w_valid_list', 'in_file'),
                                           ('target_zooms', 'target_zooms'),
                                           ('target_shape', 'target_shape')]),
        (t2w_ref_dimensions, outputnode, [('out_report', 'out_report'),
                                          ('t1w_valid_list', 't2w_valid_list')
                                          ]),
    ])

    if num_t2w == 1:
        get1st = pe.Node(niu.Select(index=[0]), name='get1st')
        outputnode.inputs.t2w_realign_xfm = [
            pkgr('smriprep', 'data/itkIdentityTransform.txt')
        ]

        wf.connect([
            (t2w_conform, get1st, [('out_file', 'inlist')]),
            (get1st, outputnode, [('out', 't2w_ref')]),
        ])

        return wf

    wf.__desc__ = f"""\
A T2w-reference map was computed after registration of
{num_t2w} T2w images (after INU-correction) using
`mri_robust_template` [FreeSurfer {fs.Info().looseversion() or "<ver>"}, @fs_template].
"""

    t2w_conform_xfm = pe.MapNode(LTAConvert(in_lta='identity.nofile',
                                            out_lta=True),
                                 iterfield=['source_file', 'target_file'],
                                 name='t2w_conform_xfm')

    # 1a. Correct for bias field: the bias field is an additive factor
    #     in log-transformed intensity units. Therefore, it is not a linear
    #     combination of fields and N4 fails with merged images.
    # 1b. Align and merge if several T1w images are provided
    n4_correct = pe.MapNode(ants.N4BiasFieldCorrection(dimension=3,
                                                       copy_header=True),
                            iterfield='input_image',
                            name='n4_correct',
                            n_procs=1)  # n_procs=1 for reproducibility

    # StructuralReference is fs.RobustTemplate if > 1 volume, copying otherwise
    t2w_merge = pe.Node(
        StructuralReference(
            auto_detect_sensitivity=True,
            initial_timepoint=1,  # For deterministic behavior
            intensity_scaling=True,  # 7-DOF (rigid + intensity)
            subsample_threshold=200,
            fixed_timepoint=not longitudinal,
            no_iteration=not longitudinal,
            transform_outputs=True,
        ),
        mem_gb=2 * num_t2w - 1,
        name='t2w_merge')

    # 2. Reorient template to RAS, if needed (mri_robust_template may set to LIA)
    t2w_reorient = pe.Node(image.Reorient(), name='t2w_reorient')

    merge_xfm = pe.MapNode(niu.Merge(2),
                           name='merge_xfm',
                           iterfield=['in1', 'in2'],
                           run_without_submitting=True)
    concat_xfms = pe.MapNode(ConcatenateXFMs(inverse=True),
                             name="concat_xfms",
                             iterfield=['in_xfms'],
                             run_without_submitting=True)

    def _set_threads(in_list, maximum):
        return min(len(in_list), maximum)

    wf.connect([
        (t2w_ref_dimensions, t2w_conform_xfm, [('t1w_valid_list',
                                                'source_file')]),
        (t2w_conform, t2w_conform_xfm, [('out_file', 'target_file')]),
        (t2w_conform, n4_correct, [('out_file', 'input_image')]),
        (t2w_conform, t2w_merge,
         [(('out_file', _set_threads, omp_nthreads), 'num_threads'),
          (('out_file', add_suffix, '_template'), 'out_file')]),
        (n4_correct, t2w_merge, [('output_image', 'in_files')]),
        (t2w_merge, t2w_reorient, [('out_file', 'in_file')]),
        # Combine orientation and template transforms
        (t2w_conform_xfm, merge_xfm, [('out_lta', 'in1')]),
        (t2w_merge, merge_xfm, [('transform_outputs', 'in2')]),
        (merge_xfm, concat_xfms, [('out', 'in_xfms')]),
        # Output
        (t2w_reorient, outputnode, [('out_file', 't2w_ref')]),
        (concat_xfms, outputnode, [('out_xfm', 't2w_realign_xfm')]),
    ])

    return wf