Пример #1
0
def init_bbreg_wf(use_bbr, bold2t1w_dof, omp_nthreads, name='bbreg_wf'):
    """
    This workflow uses FreeSurfer's ``bbregister`` to register a BOLD image to
    a T1-weighted structural image.

    It is a counterpart to :py:func:`~fmriprep.workflows.util.init_fsl_bbr_wf`,
    which performs the same task using FSL's FLIRT with a BBR cost function.

    The ``use_bbr`` option permits a high degree of control over registration.
    If ``False``, standard, affine coregistration will be performed using
    FreeSurfer's ``mri_coreg`` tool.
    If ``True``, ``bbregister`` will be seeded with the initial transform found
    by ``mri_coreg`` (equivalent to running ``bbregister --init-coreg``).
    If ``None``, after ``bbregister`` is run, the resulting affine transform
    will be compared to the initial transform found by ``mri_coreg``.
    Excessive deviation will result in rejecting the BBR refinement and
    accepting the original, affine registration.

    .. workflow ::
        :graph2use: orig
        :simple_form: yes

        from fmriprep.workflows.bold.registration import init_bbreg_wf
        wf = init_bbreg_wf(use_bbr=True, bold2t1w_dof=9, omp_nthreads=1)


    Parameters

        use_bbr : bool or None
            Enable/disable boundary-based registration refinement.
            If ``None``, test BBR result for distortion before accepting.
        bold2t1w_dof : 6, 9 or 12
            Degrees-of-freedom for BOLD-T1w registration
        name : str, optional
            Workflow name (default: bbreg_wf)


    Inputs

        in_file
            Reference BOLD image to be registered
        t1_2_fsnative_reverse_transform
            FSL-style affine matrix translating from FreeSurfer T1.mgz to T1w
        subjects_dir
            FreeSurfer SUBJECTS_DIR
        subject_id
            FreeSurfer subject ID (must have folder in SUBJECTS_DIR)
        t1_brain
            Unused (see :py:func:`~fmriprep.workflows.util.init_fsl_bbr_wf`)
        t1_seg
            Unused (see :py:func:`~fmriprep.workflows.util.init_fsl_bbr_wf`)


    Outputs

        itk_bold_to_t1
            Affine transform from ``ref_bold_brain`` to T1 space (ITK format)
        itk_t1_to_bold
            Affine transform from T1 space to BOLD space (ITK format)
        out_report
            Reportlet for assessing registration quality
        fallback
            Boolean indicating whether BBR was rejected (mri_coreg registration returned)

    """
    workflow = pe.Workflow(name=name)

    inputnode = pe.Node(
        niu.IdentityInterface([
            'in_file',
            't1_2_fsnative_reverse_transform', 'subjects_dir', 'subject_id',  # BBRegister
            't1_seg', 't1_brain']),  # FLIRT BBR
        name='inputnode')
    outputnode = pe.Node(
        niu.IdentityInterface(['itk_bold_to_t1', 'itk_t1_to_bold', 'out_report', 'fallback']),
        name='outputnode')

    mri_coreg = pe.Node(
        MRICoregRPT(dof=bold2t1w_dof, sep=[4], ftol=0.0001, linmintol=0.01,
                    generate_report=not use_bbr),
        name='mri_coreg', n_procs=omp_nthreads, mem_gb=5)

    lta_concat = pe.Node(ConcatenateLTA(out_file='out.lta'), name='lta_concat')
    # XXX LTA-FSL-ITK may ultimately be able to be replaced with a straightforward
    # LTA-ITK transform, but right now the translation parameters are off.
    lta2fsl_fwd = pe.Node(fs.utils.LTAConvert(out_fsl=True), name='lta2fsl_fwd')
    lta2fsl_inv = pe.Node(fs.utils.LTAConvert(out_fsl=True, invert=True), name='lta2fsl_inv')
    fsl2itk_fwd = pe.Node(c3.C3dAffineTool(fsl2ras=True, itk_transform=True),
                          name='fsl2itk_fwd', mem_gb=DEFAULT_MEMORY_MIN_GB)
    fsl2itk_inv = pe.Node(c3.C3dAffineTool(fsl2ras=True, itk_transform=True),
                          name='fsl2itk_inv', mem_gb=DEFAULT_MEMORY_MIN_GB)

    workflow.connect([
        (inputnode, mri_coreg, [('subjects_dir', 'subjects_dir'),
                                ('subject_id', 'subject_id'),
                                ('in_file', 'source_file')]),
        # Output ITK transforms
        (inputnode, lta_concat, [('t1_2_fsnative_reverse_transform', 'in_lta2')]),
        (lta_concat, lta2fsl_fwd, [('out_file', 'in_lta')]),
        (lta_concat, lta2fsl_inv, [('out_file', 'in_lta')]),
        (inputnode, fsl2itk_fwd, [('t1_brain', 'reference_file'),
                                  ('in_file', 'source_file')]),
        (inputnode, fsl2itk_inv, [('in_file', 'reference_file'),
                                  ('t1_brain', 'source_file')]),
        (lta2fsl_fwd, fsl2itk_fwd, [('out_fsl', 'transform_file')]),
        (lta2fsl_inv, fsl2itk_inv, [('out_fsl', 'transform_file')]),
        (fsl2itk_fwd, outputnode, [('itk_transform', 'itk_bold_to_t1')]),
        (fsl2itk_inv, outputnode, [('itk_transform', 'itk_t1_to_bold')]),
    ])

    # Short-circuit workflow building, use initial registration
    if use_bbr is False:
        workflow.connect([
            (mri_coreg, outputnode, [('out_report', 'out_report')]),
            (mri_coreg, lta_concat, [('out_lta_file', 'in_lta1')])])
        outputnode.inputs.fallback = True

        return workflow

    bbregister = pe.Node(
        BBRegisterRPT(dof=bold2t1w_dof, contrast_type='t2', registered_file=True,
                      out_lta_file=True, generate_report=True),
        name='bbregister', mem_gb=12)

    workflow.connect([
        (inputnode, bbregister, [('subjects_dir', 'subjects_dir'),
                                 ('subject_id', 'subject_id'),
                                 ('in_file', 'source_file')]),
        (mri_coreg, bbregister, [('out_lta_file', 'init_reg_file')]),
    ])

    # Short-circuit workflow building, use boundary-based registration
    if use_bbr is True:
        workflow.connect([
            (bbregister, outputnode, [('out_report', 'out_report')]),
            (bbregister, lta_concat, [('out_lta_file', 'in_lta1')])])
        outputnode.inputs.fallback = False

        return workflow

    transforms = pe.Node(niu.Merge(2), run_without_submitting=True, name='transforms')
    reports = pe.Node(niu.Merge(2), run_without_submitting=True, name='reports')

    lta_ras2ras = pe.MapNode(fs.utils.LTAConvert(out_lta=True), iterfield=['in_lta'],
                             name='lta_ras2ras', mem_gb=2)
    compare_transforms = pe.Node(niu.Function(function=compare_xforms), name='compare_transforms')

    select_transform = pe.Node(niu.Select(), run_without_submitting=True, name='select_transform')
    select_report = pe.Node(niu.Select(), run_without_submitting=True, name='select_report')

    workflow.connect([
        (bbregister, transforms, [('out_lta_file', 'in1')]),
        (mri_coreg, transforms, [('out_lta_file', 'in2')]),
        # Normalize LTA transforms to RAS2RAS (inputs are VOX2VOX) and compare
        (transforms, lta_ras2ras, [('out', 'in_lta')]),
        (lta_ras2ras, compare_transforms, [('out_lta', 'lta_list')]),
        (compare_transforms, outputnode, [('out', 'fallback')]),
        # Select output transform
        (transforms, select_transform, [('out', 'inlist')]),
        (compare_transforms, select_transform, [('out', 'index')]),
        (select_transform, lta_concat, [('out', 'in_lta1')]),
        # Select output report
        (bbregister, reports, [('out_report', 'in1')]),
        (mri_coreg, reports, [('out_report', 'in2')]),
        (reports, select_report, [('out', 'inlist')]),
        (compare_transforms, select_report, [('out', 'index')]),
        (select_report, outputnode, [('out', 'out_report')]),
    ])

    return workflow
Пример #2
0
def init_fsl_bbr_wf(use_bbr, bold2t1w_dof, name='fsl_bbr_wf'):
    """
    This workflow uses FSL FLIRT to register a BOLD image to a T1-weighted
    structural image, using a boundary-based registration (BBR) cost function.

    It is a counterpart to :py:func:`~fmriprep.workflows.bold.registration.init_bbreg_wf`,
    which performs the same task using FreeSurfer's ``bbregister``.

    The ``use_bbr`` option permits a high degree of control over registration.
    If ``False``, standard, rigid coregistration will be performed by FLIRT.
    If ``True``, FLIRT-BBR will be seeded with the initial transform found by
    the rigid coregistration.
    If ``None``, after FLIRT-BBR is run, the resulting affine transform
    will be compared to the initial transform found by FLIRT.
    Excessive deviation will result in rejecting the BBR refinement and
    accepting the original, affine registration.

    .. workflow ::
        :graph2use: orig
        :simple_form: yes

        from fmriprep.workflows.bold.registration import init_fsl_bbr_wf
        wf = init_fsl_bbr_wf(use_bbr=True, bold2t1w_dof=9)


    Parameters

        use_bbr : bool or None
            Enable/disable boundary-based registration refinement.
            If ``None``, test BBR result for distortion before accepting.
        bold2t1w_dof : 6, 9 or 12
            Degrees-of-freedom for BOLD-T1w registration
        name : str, optional
            Workflow name (default: fsl_bbr_wf)


    Inputs

        in_file
            Reference BOLD image to be registered
        t1_brain
            Skull-stripped T1-weighted structural image
        t1_seg
            FAST segmentation of ``t1_brain``
        t1_2_fsnative_reverse_transform
            Unused (see :py:func:`~fmriprep.workflows.util.init_bbreg_wf`)
        subjects_dir
            Unused (see :py:func:`~fmriprep.workflows.util.init_bbreg_wf`)
        subject_id
            Unused (see :py:func:`~fmriprep.workflows.util.init_bbreg_wf`)


    Outputs

        itk_bold_to_t1
            Affine transform from ``ref_bold_brain`` to T1 space (ITK format)
        itk_t1_to_bold
            Affine transform from T1 space to BOLD space (ITK format)
        out_report
            Reportlet for assessing registration quality
        fallback
            Boolean indicating whether BBR was rejected (rigid FLIRT registration returned)

    """
    workflow = pe.Workflow(name=name)

    inputnode = pe.Node(
        niu.IdentityInterface([
            'in_file',
            't1_2_fsnative_reverse_transform', 'subjects_dir', 'subject_id',  # BBRegister
            't1_seg', 't1_brain']),  # FLIRT BBR
        name='inputnode')
    outputnode = pe.Node(
        niu.IdentityInterface(['itk_bold_to_t1', 'itk_t1_to_bold', 'out_report', 'fallback']),
        name='outputnode')

    wm_mask = pe.Node(niu.Function(function=extract_wm), name='wm_mask')
    flt_bbr_init = pe.Node(FLIRTRPT(dof=6, generate_report=not use_bbr), name='flt_bbr_init')

    invt_bbr = pe.Node(fsl.ConvertXFM(invert_xfm=True), name='invt_bbr',
                       mem_gb=DEFAULT_MEMORY_MIN_GB)

    #  BOLD to T1 transform matrix is from fsl, using c3 tools to convert to
    #  something ANTs will like.
    fsl2itk_fwd = pe.Node(c3.C3dAffineTool(fsl2ras=True, itk_transform=True),
                          name='fsl2itk_fwd', mem_gb=DEFAULT_MEMORY_MIN_GB)
    fsl2itk_inv = pe.Node(c3.C3dAffineTool(fsl2ras=True, itk_transform=True),
                          name='fsl2itk_inv', mem_gb=DEFAULT_MEMORY_MIN_GB)

    workflow.connect([
        (inputnode, flt_bbr_init, [('in_file', 'in_file'),
                                   ('t1_brain', 'reference')]),
        (inputnode, fsl2itk_fwd, [('t1_brain', 'reference_file'),
                                  ('in_file', 'source_file')]),
        (inputnode, fsl2itk_inv, [('in_file', 'reference_file'),
                                  ('t1_brain', 'source_file')]),
        (invt_bbr, fsl2itk_inv, [('out_file', 'transform_file')]),
        (fsl2itk_fwd, outputnode, [('itk_transform', 'itk_bold_to_t1')]),
        (fsl2itk_inv, outputnode, [('itk_transform', 'itk_t1_to_bold')]),
    ])

    # Short-circuit workflow building, use rigid registration
    if use_bbr is False:
        workflow.connect([
            (flt_bbr_init, invt_bbr, [('out_matrix_file', 'in_file')]),
            (flt_bbr_init, fsl2itk_fwd, [('out_matrix_file', 'transform_file')]),
            (flt_bbr_init, outputnode, [('out_report', 'out_report')]),
        ])
        outputnode.inputs.fallback = True

        return workflow

    flt_bbr = pe.Node(
        FLIRTRPT(cost_func='bbr', dof=bold2t1w_dof, generate_report=True,
                 schedule=op.join(os.getenv('FSLDIR'), 'etc/flirtsch/bbr.sch')),
        name='flt_bbr')

    workflow.connect([
        (inputnode, wm_mask, [('t1_seg', 'in_seg')]),
        (inputnode, flt_bbr, [('in_file', 'in_file'),
                              ('t1_brain', 'reference')]),
        (flt_bbr_init, flt_bbr, [('out_matrix_file', 'in_matrix_file')]),
        (wm_mask, flt_bbr, [('out', 'wm_seg')]),
    ])

    # Short-circuit workflow building, use boundary-based registration
    if use_bbr is True:
        workflow.connect([
            (flt_bbr, invt_bbr, [('out_matrix_file', 'in_file')]),
            (flt_bbr, fsl2itk_fwd, [('out_matrix_file', 'transform_file')]),
            (flt_bbr, outputnode, [('out_report', 'out_report')]),
        ])
        outputnode.inputs.fallback = False

        return workflow

    transforms = pe.Node(niu.Merge(2), run_without_submitting=True, name='transforms')
    reports = pe.Node(niu.Merge(2), run_without_submitting=True, name='reports')

    compare_transforms = pe.Node(niu.Function(function=compare_xforms), name='compare_transforms')

    select_transform = pe.Node(niu.Select(), run_without_submitting=True, name='select_transform')
    select_report = pe.Node(niu.Select(), run_without_submitting=True, name='select_report')

    fsl_to_lta = pe.MapNode(fs.utils.LTAConvert(out_lta=True), iterfield=['in_fsl'],
                            name='fsl_to_lta')

    workflow.connect([
        (flt_bbr, transforms, [('out_matrix_file', 'in1')]),
        (flt_bbr_init, transforms, [('out_matrix_file', 'in2')]),
        # Convert FSL transforms to LTA (RAS2RAS) transforms and compare
        (inputnode, fsl_to_lta, [('in_file', 'source_file'),
                                 ('t1_brain', 'target_file')]),
        (transforms, fsl_to_lta, [('out', 'in_fsl')]),
        (fsl_to_lta, compare_transforms, [('out_lta', 'lta_list')]),
        (compare_transforms, outputnode, [('out', 'fallback')]),
        # Select output transform
        (transforms, select_transform, [('out', 'inlist')]),
        (compare_transforms, select_transform, [('out', 'index')]),
        (select_transform, invt_bbr, [('out', 'in_file')]),
        (select_transform, fsl2itk_fwd, [('out', 'transform_file')]),
        (flt_bbr, reports, [('out_report', 'in1')]),
        (flt_bbr_init, reports, [('out_report', 'in2')]),
        (reports, select_report, [('out', 'inlist')]),
        (compare_transforms, select_report, [('out', 'index')]),
        (select_report, outputnode, [('out', 'out_report')]),
    ])

    return workflow
Пример #3
0
def init_anat_template_wf(longitudinal, omp_nthreads, num_t1w, name='anat_template_wf'):
    r"""
    This workflow generates a canonically oriented structural template from
    input T1w images.


    .. workflow::
        :graph2use: orig
        :simple_form: yes

        from fmriprep.workflows.anatomical import init_anat_template_wf
        wf = init_anat_template_wf(longitudinal=False, omp_nthreads=1, num_t1w=1)

    **Parameters**

        longitudinal : bool
            Create unbiased structural template, regardless of number of inputs
            (may increase runtime)
        omp_nthreads : int
            Maximum number of threads an individual process may use
        name : str, optional
            Workflow name (default: anat_template_wf)


    **Inputs**

        t1w
            List of T1-weighted structural images


    **Outputs**

        t1_template
            Structural template, defining T1w space
        template_transforms
            List of affine transforms from ``t1_template`` to original T1w images
        out_report
            Conformation report
    """

    workflow = pe.Workflow(name=name)

    inputnode = pe.Node(niu.IdentityInterface(fields=['t1w']), name='inputnode')
    outputnode = pe.Node(niu.IdentityInterface(
        fields=['t1_template', 't1w_valid_list', 'template_transforms', 'out_report']),
        name='outputnode')

    # 0. Reorient T1w image(s) to RAS and resample to common voxel space
    t1_template_dimensions = pe.Node(TemplateDimensions(), name='t1_template_dimensions')
    t1_conform = pe.MapNode(Conform(), iterfield='in_file', name='t1_conform')

    # 1. Align and merge if several T1w images are provided
    t1_merge = pe.Node(
        # StructuralReference is fs.RobustTemplate if > 1 volume, copying otherwise
        StructuralReference(auto_detect_sensitivity=True,
                            initial_timepoint=1,      # For deterministic behavior
                            intensity_scaling=True,   # 7-DOF (rigid + intensity)
                            subsample_threshold=200,
                            fixed_timepoint=not longitudinal,
                            no_iteration=not longitudinal,
                            transform_outputs=True,
                            ),
        mem_gb=2 * num_t1w - 1,
        name='t1_merge')

    # Reorient template to RAS, if needed (mri_robust_template may set to LIA)
    t1_reorient = pe.Node(Reorient(), name='t1_reorient')

    lta_to_fsl = pe.MapNode(fs.utils.LTAConvert(out_fsl=True), iterfield=['in_lta'],
                            name='lta_to_fsl')

    concat_affines = pe.MapNode(
        ConcatAffines(3, invert=True), iterfield=['mat_AtoB', 'mat_BtoC'],
        name='concat_affines', run_without_submitting=True)

    fsl_to_itk = pe.MapNode(c3.C3dAffineTool(fsl2ras=True, itk_transform=True),
                            iterfield=['transform_file', 'source_file'], name='fsl_to_itk')

    def set_threads(in_list, maximum):
        return min(len(in_list), maximum)

    workflow.connect([
        (inputnode, t1_template_dimensions, [('t1w', 't1w_list')]),
        (t1_template_dimensions, t1_conform, [
            ('t1w_valid_list', 'in_file'),
            ('target_zooms', 'target_zooms'),
            ('target_shape', 'target_shape')]),
        (t1_conform, t1_merge, [
            ('out_file', 'in_files'),
            (('out_file', set_threads, omp_nthreads), 'num_threads'),
            (('out_file', add_suffix, '_template'), 'out_file')]),
        (t1_merge, t1_reorient, [('out_file', 'in_file')]),
        # Combine orientation and template transforms
        (t1_merge, lta_to_fsl, [('transform_outputs', 'in_lta')]),
        (t1_conform, concat_affines, [('transform', 'mat_AtoB')]),
        (lta_to_fsl, concat_affines, [('out_fsl', 'mat_BtoC')]),
        (t1_reorient, concat_affines, [('transform', 'mat_CtoD')]),
        (t1_template_dimensions, fsl_to_itk, [('t1w_valid_list', 'source_file')]),
        (t1_reorient, fsl_to_itk, [('out_file', 'reference_file')]),
        (concat_affines, fsl_to_itk, [('out_mat', 'transform_file')]),
        # Output
        (t1_template_dimensions, outputnode, [('out_report', 'out_report'),
                                              ('t1w_valid_list', 't1w_valid_list')]),
        (t1_reorient, outputnode, [('out_file', 't1_template')]),
        (fsl_to_itk, outputnode, [('itk_transform', 'template_transforms')]),
    ])

    return workflow