Пример #1
0
def init_ica_aroma_wf(name='ica_aroma_wf', ignore_aroma_err=False):
    '''
    From: https://github.com/rhr-pruim/ICA-AROMA
    Description:
    ICA-AROMA (i.e. ‘ICA-based Automatic Removal Of Motion Artifacts’) concerns
    a data-driven method to identify and remove motion-related independent
    components from fMRI data.

    Preconditions/Assumptions:
    The input fmri bold file is in standard space
    (for ease of interfacing with the original ICA-AROMA code)

    Steps:
    1) smooth data using SUSAN
    2) run melodic outside of ICA_AROMA to generate the report
    3) run ICA_AROMA
    4) print identified motion components (aggressive) to tsv
    5) pass classified_motion_ICs and melodic_mix for user to complete nonaggr denoising
    '''
    workflow = pe.Workflow(name=name)

    inputnode = pe.Node(utility.IdentityInterface(
        fields=['epi_mni', 'movpar_file', 'epi_mask_mni']),
                        name='inputnode')

    outputnode = pe.Node(utility.IdentityInterface(fields=[
        'aroma_confounds', 'out_report', 'aroma_noise_ics', 'melodic_mix'
    ]),
                         name='outputnode')

    # helper function to get
    # smoothing node (SUSAN)
    # functions to help set SUSAN
    def getbtthresh(medianval):
        return 0.75 * medianval

    def getusans_func(image, thresh):
        return [tuple([image, thresh])]

    calc_median_val = pe.Node(fsl.ImageStats(op_string='-k %s -p 50'),
                              name='calc_median_val')

    calc_epi_mean = pe.Node(fsl.MeanImage(), name='calc_epi_mean')

    brightness_threshold = pe.Node(utility.Function(function=getbtthresh,
                                                    input_names=['medianval'],
                                                    output_names=['thresh']),
                                   name='brightness_threshold')

    getusans = pe.Node(utility.Function(function=getusans_func,
                                        input_names=['image', 'thresh'],
                                        output_names=['usans']),
                       name='getusans')

    smooth = pe.Node(fsl.SUSAN(fwhm=6.0), name='smooth')

    # melodic node
    melodic = pe.Node(nws.MELODICRPT(no_bet=True,
                                     no_mm=True,
                                     generate_report=True),
                      name="melodic")

    # ica_aroma node
    ica_aroma = pe.Node(aroma.ICA_AROMA(denoise_type='no'), name='ica_aroma')

    # extract the confound ICs from the results
    ica_aroma_confound_extraction = pe.Node(
        utility.Function(
            function=get_ica_confounds,
            input_names=['ica_out_dir', 'ignore_aroma_err'],
            output_names=['aroma_confounds', 'aroma_noise_ics',
                          'melodic_mix']),
        name='ica_aroma_confound_extraction')
    ica_aroma_confound_extraction.inputs.ignore_aroma_err = ignore_aroma_err

    # connect the nodes
    workflow.connect([
        # Connect input nodes to complete smoothing
        (inputnode, calc_median_val, [('epi_mni', 'in_file'),
                                      ('epi_mask_mni', 'mask_file')]),
        (calc_median_val, brightness_threshold, [('out_stat', 'medianval')]),
        (inputnode, calc_epi_mean, [('epi_mni', 'in_file')]),
        (calc_epi_mean, getusans, [('out_file', 'image')]),
        (calc_median_val, getusans, [('out_stat', 'thresh')]),
        (inputnode, smooth, [('epi_mni', 'in_file')]),
        (getusans, smooth, [('usans', 'usans')]),
        (brightness_threshold, smooth, [('thresh', 'brightness_threshold')]),
        # connect smooth to melodic
        (smooth, melodic, [('smoothed_file', 'in_files')]),
        (inputnode, melodic, [('epi_mask_mni', 'report_mask'),
                              ('epi_mask_mni', 'mask')]),
        # connect nodes to ICA-AROMA
        (smooth, ica_aroma, [('smoothed_file', 'in_file')]),
        (inputnode, ica_aroma, [('movpar_file', 'motion_parameters')]),
        (melodic, ica_aroma, [('out_dir', 'melodic_dir')]),
        # geneerate tsvs from ICA_AROMA
        (ica_aroma, ica_aroma_confound_extraction, [('out_dir', 'ica_out_dir')]
         ),
        # output for processing and reporting
        (ica_aroma_confound_extraction,
         outputnode, [('aroma_confounds', 'aroma_confounds'),
                      ('aroma_noise_ics', 'aroma_noise_ics'),
                      ('melodic_mix', 'melodic_mix')]),
        # TODO change melodic report to reflect noise and non-noise components
        (melodic, outputnode, [('out_report', 'out_report')]),
    ])

    return workflow
Пример #2
0
def init_ica_aroma_wf(name='ica_aroma_wf', ignore_aroma_err=False):
    '''
    This workflow wraps `ICA-AROMA`_ to identify and remove motion-related
    independent components from a BOLD time series.

    The following steps are performed:

    #. Smooth data using SUSAN
    #. Run MELODIC outside of ICA-AROMA to generate the report
    #. Run ICA-AROMA
    #. Aggregate identified motion components (aggressive) to TSV
    #. Return classified_motion_ICs and melodic_mix for user to complete
        non-aggressive denoising in T1w space

    Additionally, non-aggressive denoising is performed on the BOLD series
    resampled into MNI space.

    .. workflow::
        :graph2use: orig
        :simple_form: yes

        from fmriprep.workflows.bold.confounds import init_ica_aroma_wf
        wf = init_ica_aroma_wf()

    **Parameters**

        ignore_aroma_err : bool
            Do not fail on ICA-AROMA errors

    **Inputs**

        bold_mni
            BOLD series, resampled to template space
        movpar_file
            SPM-formatted motion parameters file
        bold_mask_mni
            BOLD series mask in template space

    **Outputs**

        aroma_confounds
            TSV of confounds identified as noise by ICA-AROMA
        aroma_noise_ics
            CSV of noise components identified by ICA-AROMA
        melodic_mix
            FSL MELODIC mixing matrix
        nonaggr_denoised_file
            BOLD series with non-aggressive ICA-AROMA denoising applied
        out_report
            Reportlet visualizing MELODIC ICs, with ICA-AROMA signal/noise labels

    .. _ICA-AROMA: https://github.com/rhr-pruim/ICA-AROMA
    '''
    workflow = pe.Workflow(name=name)

    inputnode = pe.Node(niu.IdentityInterface(
        fields=['bold_mni', 'movpar_file', 'bold_mask_mni']), name='inputnode')

    outputnode = pe.Node(niu.IdentityInterface(
        fields=['aroma_confounds', 'out_report',
                'aroma_noise_ics', 'melodic_mix',
                'nonaggr_denoised_file']), name='outputnode')

    calc_median_val = pe.Node(fsl.ImageStats(op_string='-k %s -p 50'), name='calc_median_val')
    calc_bold_mean = pe.Node(fsl.MeanImage(), name='calc_bold_mean')

    def getusans_func(image, thresh):
        return [tuple([image, thresh])]
    getusans = pe.Node(niu.Function(function=getusans_func, output_names=['usans']),
                       name='getusans', mem_gb=0.01)

    smooth = pe.Node(fsl.SUSAN(fwhm=6.0), name='smooth')

    # melodic node
    melodic = pe.Node(fsl.MELODIC(no_bet=True, no_mm=True), name="melodic")

    # ica_aroma node
    ica_aroma = pe.Node(ICA_AROMARPT(denoise_type='nonaggr', generate_report=True),
                        name='ica_aroma')

    # extract the confound ICs from the results
    ica_aroma_confound_extraction = pe.Node(ICAConfounds(ignore_aroma_err=ignore_aroma_err),
                                            name='ica_aroma_confound_extraction')

    def _getbtthresh(medianval):
        return 0.75 * medianval

    # connect the nodes
    workflow.connect([
        # Connect input nodes to complete smoothing
        (inputnode, calc_median_val, [('bold_mni', 'in_file'),
                                      ('bold_mask_mni', 'mask_file')]),
        (inputnode, calc_bold_mean, [('bold_mni', 'in_file')]),
        (calc_bold_mean, getusans, [('out_file', 'image')]),
        (calc_median_val, getusans, [('out_stat', 'thresh')]),
        (inputnode, smooth, [('bold_mni', 'in_file')]),
        (getusans, smooth, [('usans', 'usans')]),
        (calc_median_val, smooth, [(('out_stat', _getbtthresh), 'brightness_threshold')]),
        # connect smooth to melodic
        (smooth, melodic, [('smoothed_file', 'in_files')]),
        (inputnode, melodic, [('bold_mask_mni', 'mask')]),
        # connect nodes to ICA-AROMA
        (smooth, ica_aroma, [('smoothed_file', 'in_file')]),
        (inputnode, ica_aroma, [('bold_mask_mni', 'report_mask'),
                                ('movpar_file', 'motion_parameters')]),
        (melodic, ica_aroma, [('out_dir', 'melodic_dir')]),
        # generate tsvs from ICA-AROMA
        (ica_aroma, ica_aroma_confound_extraction, [('out_dir', 'in_directory')]),
        # output for processing and reporting
        (ica_aroma_confound_extraction, outputnode, [('aroma_confounds', 'aroma_confounds'),
                                                     ('aroma_noise_ics', 'aroma_noise_ics'),
                                                     ('melodic_mix', 'melodic_mix')]),
        # TODO change melodic report to reflect noise and non-noise components
        (ica_aroma, outputnode, [('out_report', 'out_report'),
                                 ('nonaggr_denoised_file', 'nonaggr_denoised_file')]),
    ])

    return workflow
Пример #3
0
def init_ica_aroma_wf(template, metadata, mem_gb, omp_nthreads,
                      name='ica_aroma_wf',
                      ignore_aroma_err=False,
                      aroma_melodic_dim=None,
                      use_fieldwarp=True):
    """
    This workflow wraps `ICA-AROMA`_ to identify and remove motion-related
    independent components from a BOLD time series.

    The following steps are performed:

    #. Smooth data using SUSAN
    #. Run MELODIC outside of ICA-AROMA to generate the report
    #. Run ICA-AROMA
    #. Aggregate identified motion components (aggressive) to TSV
    #. Return classified_motion_ICs and melodic_mix for user to complete
        non-aggressive denoising in T1w space
    #. Calculate ICA-AROMA-identified noise components
        (columns named ``AROMAAggrCompXX``)

    Additionally, non-aggressive denoising is performed on the BOLD series
    resampled into MNI space.

    .. workflow::
        :graph2use: orig
        :simple_form: yes

        from fmriprep.workflows.bold.confounds import init_ica_aroma_wf
        wf = init_ica_aroma_wf(template='MNI152NLin2009cAsym',
                               metadata={'RepetitionTime': 1.0},
                               mem_gb=3,
                               omp_nthreads=1)

    **Parameters**

        template : str
            Spatial normalization template used as target when that
            registration step was previously calculated with
            :py:func:`~fmriprep.workflows.bold.registration.init_bold_reg_wf`.
            The template must be one of the MNI templates (fMRIPrep uses
            ``MNI152NLin2009cAsym`` by default).
        metadata : dict
            BIDS metadata for BOLD file
        mem_gb : float
            Size of BOLD file in GB
        omp_nthreads : int
            Maximum number of threads an individual process may use
        name : str
            Name of workflow (default: ``bold_mni_trans_wf``)
        use_fieldwarp : bool
            Include SDC warp in single-shot transform from BOLD to MNI
        ignore_aroma_err : bool
            Do not fail on ICA-AROMA errors
        aroma_melodic_dim: int or None
            Set the dimensionality of the Melodic ICA decomposition
            If None, MELODIC automatically estimates dimensionality.


    **Inputs**

        bold_mni
            BOLD series, resampled to template space
        movpar_file
            SPM-formatted motion parameters file
        bold_mask_mni
            BOLD series mask in template space

    **Outputs**

        aroma_confounds
            TSV of confounds identified as noise by ICA-AROMA
        aroma_noise_ics
            CSV of noise components identified by ICA-AROMA
        melodic_mix
            FSL MELODIC mixing matrix
        nonaggr_denoised_file
            BOLD series with non-aggressive ICA-AROMA denoising applied

    .. _ICA-AROMA: https://github.com/rhr-pruim/ICA-AROMA
    """
    workflow = pe.Workflow(name=name)

    inputnode = pe.Node(niu.IdentityInterface(
        fields=[
            'itk_bold_to_t1',
            't1_2_mni_forward_transform',
            'name_source',
            'bold_split',
            'bold_mask',
            'hmc_xforms',
            'fieldwarp',
            'movpar_file']), name='inputnode')

    outputnode = pe.Node(niu.IdentityInterface(
        fields=['aroma_confounds', 'aroma_noise_ics', 'melodic_mix',
                'nonaggr_denoised_file']), name='outputnode')

    bold_mni_trans_wf = init_bold_mni_trans_wf(
        template=template,
        mem_gb=mem_gb,
        omp_nthreads=omp_nthreads,
        template_out_grid=os.path.join(get_mni_icbm152_linear(),
                                       '2mm_T1.nii.gz'),
        use_compression=False,
        use_fieldwarp=use_fieldwarp,
        name='bold_mni_trans_wf'
    )

    calc_median_val = pe.Node(fsl.ImageStats(op_string='-k %s -p 50'), name='calc_median_val')
    calc_bold_mean = pe.Node(fsl.MeanImage(), name='calc_bold_mean')

    def _getusans_func(image, thresh):
        return [tuple([image, thresh])]
    getusans = pe.Node(niu.Function(function=_getusans_func, output_names=['usans']),
                       name='getusans', mem_gb=0.01)

    smooth = pe.Node(fsl.SUSAN(fwhm=6.0), name='smooth')

    # melodic node
    melodic = pe.Node(fsl.MELODIC(
        no_bet=True, tr_sec=float(metadata['RepetitionTime']), mm_thresh=0.5, out_stats=True),
        name="melodic")

    if aroma_melodic_dim is not None:
        melodic.inputs.dim = aroma_melodic_dim

    # ica_aroma node
    ica_aroma = pe.Node(ICA_AROMARPT(
        denoise_type='nonaggr', generate_report=True, TR=metadata['RepetitionTime']),
        name='ica_aroma')

    # extract the confound ICs from the results
    ica_aroma_confound_extraction = pe.Node(ICAConfounds(ignore_aroma_err=ignore_aroma_err),
                                            name='ica_aroma_confound_extraction')

    ds_report_ica_aroma = pe.Node(
        DerivativesDataSink(suffix='ica_aroma'),
        name='ds_report_ica_aroma', run_without_submitting=True,
        mem_gb=DEFAULT_MEMORY_MIN_GB)

    def _getbtthresh(medianval):
        return 0.75 * medianval

    # connect the nodes
    workflow.connect([
        (inputnode, bold_mni_trans_wf, [
            ('name_source', 'inputnode.name_source'),
            ('bold_split', 'inputnode.bold_split'),
            ('bold_mask', 'inputnode.bold_mask'),
            ('hmc_xforms', 'inputnode.hmc_xforms'),
            ('itk_bold_to_t1', 'inputnode.itk_bold_to_t1'),
            ('t1_2_mni_forward_transform', 'inputnode.t1_2_mni_forward_transform'),
            ('fieldwarp', 'inputnode.fieldwarp')]),
        (inputnode, ica_aroma, [('movpar_file', 'motion_parameters')]),
        (bold_mni_trans_wf, calc_median_val, [
            ('outputnode.bold_mni', 'in_file'),
            ('outputnode.bold_mask_mni', 'mask_file')]),
        (bold_mni_trans_wf, calc_bold_mean, [
            ('outputnode.bold_mni', 'in_file')]),
        (calc_bold_mean, getusans, [('out_file', 'image')]),
        (calc_median_val, getusans, [('out_stat', 'thresh')]),
        # Connect input nodes to complete smoothing
        (bold_mni_trans_wf, smooth, [
            ('outputnode.bold_mni', 'in_file')]),
        (getusans, smooth, [('usans', 'usans')]),
        (calc_median_val, smooth, [(('out_stat', _getbtthresh), 'brightness_threshold')]),
        # connect smooth to melodic
        (smooth, melodic, [('smoothed_file', 'in_files')]),
        (bold_mni_trans_wf, melodic, [
            ('outputnode.bold_mask_mni', 'mask')]),
        # connect nodes to ICA-AROMA
        (smooth, ica_aroma, [('smoothed_file', 'in_file')]),
        (bold_mni_trans_wf, ica_aroma, [
            ('outputnode.bold_mask_mni', 'report_mask')]),
        (melodic, ica_aroma, [('out_dir', 'melodic_dir')]),
        # generate tsvs from ICA-AROMA
        (ica_aroma, ica_aroma_confound_extraction, [('out_dir', 'in_directory')]),
        # output for processing and reporting
        (ica_aroma_confound_extraction, outputnode, [('aroma_confounds', 'aroma_confounds'),
                                                     ('aroma_noise_ics', 'aroma_noise_ics'),
                                                     ('melodic_mix', 'melodic_mix')]),
        # TODO change melodic report to reflect noise and non-noise components
        (ica_aroma, outputnode, [('nonaggr_denoised_file', 'nonaggr_denoised_file')]),
        (ica_aroma, ds_report_ica_aroma, [('out_report', 'in_file')]),
    ])

    return workflow