Пример #1
0
    def start_new_initial_eval(self, wi: int, hm_key: str):
        self.iter_counter += 1  # up iter counter on each new config started
        config = {
            **{
                "long": deepcopy(self.hm[hm_key]["long"]["config"]),
                "short": deepcopy(self.hm[hm_key]["short"]["config"]),
            },
            **{
                k: self.config[k]
                for k in [
                    "starting_balance", "latency_simulation_ms", "market_type"
                ]
            },
            **{
                "symbol": self.symbols[0],
                "initial_eval_key": hm_key,
                "config_no": self.iter_counter
            },
        }
        line = f"starting new initial eval {config['config_no']} of {self.n_harmonies} "
        if self.do_long:
            line += " - long: " + " ".join([
                f"{e[0][:2]}{e[0][-2:]}" + str(round_dynamic(e[1], 3))
                for e in sorted(self.hm[hm_key]["long"]["config"].items())
            ])
        if self.do_short:
            line += " - short: " + " ".join([
                f"{e[0][:2]}{e[0][-2:]}" + str(round_dynamic(e[1], 3))
                for e in sorted(self.hm[hm_key]["short"]["config"].items())
            ])
        logging.info(line)

        config["market_specific_settings"] = self.market_specific_settings[
            config["symbol"]]
        config[
            "ticks_cache_fname"] = f"{self.bt_dir}/{config['symbol']}/{self.ticks_cache_fname}"
        config["passivbot_mode"] = self.config["passivbot_mode"]

        self.workers[wi] = {
            "config":
            deepcopy(config),
            "task":
            self.pool.apply_async(backtest_wrap,
                                  args=(deepcopy(config), self.ticks_caches)),
            "id_key":
            config["config_no"],
        }
        self.unfinished_evals[config["config_no"]] = {
            "config": deepcopy(config),
            "single_results": {},
            "in_progress": set([self.symbols[0]]),
        }
        self.hm[hm_key]["long"]["score"] = "in_progress"
        self.hm[hm_key]["short"]["score"] = "in_progress"
Пример #2
0
def compress_float(n: float, d: int) -> str:
    if n / 10**d >= 1:
        n = round(n)
    else:
        n = round_dynamic(n, d)
    nstr = format_float(n)
    if nstr.startswith("0."):
        nstr = nstr[1:]
    elif nstr.startswith("-0."):
        nstr = "-" + nstr[2:]
    elif nstr.endswith(".0"):
        nstr = nstr[:-2]
    return nstr
Пример #3
0
def round_values(xs, n: int):
    if type(xs) in [float, np.float64]:
        return round_dynamic(xs, n)
    if type(xs) == dict:
        return {k: round_values(xs[k], n) for k in xs}
    if type(xs) == list:
        return [round_values(x, n) for x in xs]
    if type(xs) == np.ndarray:
        return numpyize([round_values(x, n) for x in xs])
    if type(xs) == tuple:
        return tuple([round_values(x, n) for x in xs])
    if type(xs) == OrderedDict:
        return OrderedDict([(k, round_values(xs[k], n)) for k in xs])
    return xs
Пример #4
0
async def main():
    logging.basicConfig(
        format="%(asctime)s %(levelname)-8s %(message)s",
        level=logging.INFO,
        datefmt="%Y-%m-%dT%H:%M:%S",
    )
    parser = argparse.ArgumentParser(
        prog="auto profit transfer",
        description=
        "automatically transfer percentage of profits from futures wallet to spot wallet",
    )
    parser.add_argument("user",
                        type=str,
                        help="user/account_name defined in api-keys.json")
    parser.add_argument(
        "-p",
        "--percentage",
        type=float,
        required=False,
        default=0.5,
        dest="percentage",
        help="per uno, i.e. 0.02==2%.  default=0.5",
    )
    args = parser.parse_args()
    config = get_template_live_config()
    config["user"] = args.user
    config["symbol"] = "BTCUSDT"  # dummy symbol
    config["market_type"] = "futures"
    bot = await create_binance_bot(config)
    transfer_log_fpath = make_get_filepath(
        os.path.join("logs",
                     f"automatic_profit_transfer_log_{config['user']}.json"))
    try:
        already_transferred_ids = set(json.load(open(transfer_log_fpath)))
        logging.info(f"loaded already transferred IDs: {transfer_log_fpath}")
    except:
        already_transferred_ids = set()
        logging.info(f"no previous transfers to load")
    while True:
        now = (await bot.public_get(bot.endpoints["time"]))["serverTime"]
        try:
            income = await bot.get_all_income(start_time=now -
                                              1000 * 60 * 60 * 24)
        except Exception as e:
            logging.error(f"failed fetching income {e}")
            traceback.print_exc()
            income = []
        income = [
            e for e in income
            if e["transaction_id"] not in already_transferred_ids
        ]
        profit = sum([e["income"] for e in income])
        to_transfer = round_dynamic(profit * args.percentage, 4)
        if to_transfer > 0:
            try:
                transferred = await bot.private_post(
                    bot.endpoints["futures_transfer"],
                    {
                        "asset": "USDT",
                        "amount": to_transfer,
                        "type": 2
                    },
                    base_endpoint=bot.spot_base_endpoint,
                )
                logging.info(
                    f"income: {profit} transferred {to_transfer} USDT")
                already_transferred_ids.update(
                    [e["transaction_id"] for e in income])
                json.dump(list(already_transferred_ids),
                          open(transfer_log_fpath, "w"))
            except Exception as e:
                logging.error(f"failed transferring {e}")
                traceback.print_exc()
        else:
            logging.info("nothing to transfer")
        sleep(60 * 60)
Пример #5
0
    def start_new_harmony(self, wi: int):
        self.iter_counter += 1  # up iter counter on each new config started
        template = get_template_live_config(self.config["passivbot_mode"])
        new_harmony = {
            **{
                "long": deepcopy(template["long"]),
                "short": deepcopy(template["short"]),
            },
            **{
                k: self.config[k]
                for k in [
                    "starting_balance", "latency_simulation_ms", "market_type"
                ]
            },
            **{
                "symbol": self.symbols[0],
                "config_no": self.iter_counter
            },
        }
        new_harmony["long"]["enabled"] = self.do_long
        new_harmony["short"]["enabled"] = self.do_short
        for key in self.long_bounds:
            if np.random.random() < self.hm_considering_rate:
                # take note randomly from harmony memory
                new_note_long = self.hm[np.random.choice(list(
                    self.hm))]["long"]["config"][key]
                new_note_short = self.hm[np.random.choice(list(
                    self.hm))]["short"]["config"][key]
                if np.random.random() < self.pitch_adjusting_rate:
                    # tweak note
                    new_note_long = new_note_long + self.bandwidth * (
                        np.random.random() -
                        0.5) * abs(self.long_bounds[key][0] -
                                   self.long_bounds[key][1])
                    new_note_short = new_note_short + self.bandwidth * (
                        np.random.random() -
                        0.5) * abs(self.short_bounds[key][0] -
                                   self.short_bounds[key][1])
                # ensure note is within bounds
                new_note_long = max(
                    self.long_bounds[key][0],
                    min(self.long_bounds[key][1], new_note_long))
                new_note_short = max(
                    self.short_bounds[key][0],
                    min(self.short_bounds[key][1], new_note_short))
            else:
                # new random note
                new_note_long = np.random.uniform(self.long_bounds[key][0],
                                                  self.long_bounds[key][1])
                new_note_short = np.random.uniform(self.short_bounds[key][0],
                                                   self.short_bounds[key][1])
            new_harmony["long"][key] = new_note_long
            new_harmony["short"][key] = new_note_short
        logging.debug(
            f"starting new harmony {new_harmony['config_no']} - long " +
            " ".join([
                str(round_dynamic(e[1], 3))
                for e in sorted(new_harmony["long"].items())
            ]) + " - short: " + " ".join([
                str(round_dynamic(e[1], 3))
                for e in sorted(new_harmony["short"].items())
            ]))

        new_harmony[
            "market_specific_settings"] = self.market_specific_settings[
                new_harmony["symbol"]]
        new_harmony[
            "ticks_cache_fname"] = f"{self.bt_dir}/{new_harmony['symbol']}/{self.ticks_cache_fname}"
        new_harmony["passivbot_mode"] = self.config["passivbot_mode"]
        self.workers[wi] = {
            "config":
            deepcopy(new_harmony),
            "task":
            self.pool.apply_async(backtest_wrap,
                                  args=(deepcopy(new_harmony),
                                        self.ticks_caches)),
            "id_key":
            new_harmony["config_no"],
        }
        self.unfinished_evals[new_harmony["config_no"]] = {
            "config": deepcopy(new_harmony),
            "single_results": {},
            "in_progress": set([self.symbols[0]]),
        }
Пример #6
0
    def post_process(self, wi: int):
        # a worker has finished a job; process it
        cfg = deepcopy(self.workers[wi]["config"])
        id_key = self.workers[wi]["id_key"]
        symbol = cfg["symbol"]
        self.unfinished_evals[id_key]["single_results"][symbol] = self.workers[
            wi]["task"].get()
        self.unfinished_evals[id_key]["in_progress"].remove(symbol)
        results = deepcopy(self.unfinished_evals[id_key]["single_results"])
        if set(results) == set(self.symbols):
            # completed multisymbol iter
            adgs_long = [v["adg_long"] for v in results.values()]
            adg_mean_long = np.mean(adgs_long)
            PAD_std_long_raw = np.mean(
                [v["pa_distance_std_long"] for v in results.values()])
            PAD_std_long = np.mean([
                max(self.config["maximum_pa_distance_std_long"],
                    v["pa_distance_std_long"]) for v in results.values()
            ])
            PAD_mean_long_raw = np.mean(
                [v["pa_distance_mean_long"] for v in results.values()])
            PAD_mean_long = np.mean([
                max(self.config["maximum_pa_distance_mean_long"],
                    v["pa_distance_mean_long"]) for v in results.values()
            ])
            adg_DGstd_ratios_long = [
                v["adg_DGstd_ratio_long"] for v in results.values()
            ]
            adg_DGstd_ratios_long_mean = np.mean(adg_DGstd_ratios_long)
            adgs_short = [v["adg_short"] for v in results.values()]
            adg_mean_short = np.mean(adgs_short)
            PAD_std_short_raw = np.mean(
                [v["pa_distance_std_short"] for v in results.values()])

            PAD_std_short = np.mean([
                max(self.config["maximum_pa_distance_std_short"],
                    v["pa_distance_std_short"]) for v in results.values()
            ])
            PAD_mean_short_raw = np.mean(
                [v["pa_distance_mean_short"] for v in results.values()])

            PAD_mean_short = np.mean([
                max(self.config["maximum_pa_distance_mean_short"],
                    v["pa_distance_mean_short"]) for v in results.values()
            ])
            adg_DGstd_ratios_short = [
                v["adg_DGstd_ratio_short"] for v in results.values()
            ]
            adg_DGstd_ratios_short_mean = np.mean(adg_DGstd_ratios_short)

            if self.config["score_formula"] == "adg_PAD_mean":
                score_long = -adg_mean_long * min(
                    1.0, self.config["maximum_pa_distance_mean_long"] /
                    PAD_mean_long)
                score_short = -adg_mean_short * min(
                    1.0, self.config["maximum_pa_distance_mean_short"] /
                    PAD_mean_short)
            elif self.config["score_formula"] == "adg_PAD_std":
                score_long = -adg_mean_long / max(
                    self.config["maximum_pa_distance_std_long"], PAD_std_long)
                score_short = -adg_mean_short / max(
                    self.config["maximum_pa_distance_std_short"],
                    PAD_std_short)
            elif self.config["score_formula"] == "adg_DGstd_ratio":
                score_long = -adg_DGstd_ratios_long_mean
                score_short = -adg_DGstd_ratios_short_mean
            elif self.config["score_formula"] == "adg_mean":
                score_long = -adg_mean_long
                score_short = -adg_mean_short
            elif self.config["score_formula"] == "adg_min":
                score_long = -min(adgs_long)
                score_short = -min(adgs_short)
            elif self.config["score_formula"] == "adg_PAD_std_min":
                # best worst score
                scores_long = [
                    v["adg_long"] /
                    max(v["pa_distance_std_long"],
                        self.config["maximum_pa_distance_std_long"])
                    for v in results.values()
                ]
                score_long = -min(scores_long)
                scores_short = [
                    v["adg_short"] /
                    max(v["pa_distance_std_short"],
                        self.config["maximum_pa_distance_std_short"])
                    for v in results.values()
                ]
                score_short = -min(scores_short)
            else:
                raise Exception(
                    f"unknown score formula {self.config['score_formula']}")

            line = f"completed multisymbol iter {cfg['config_no']} "
            if self.do_long:
                line += f"- adg long {adg_mean_long:.6f} PAD long {PAD_mean_long:.6f} std long "
                line += f"{PAD_std_long:.5f} score long {score_long:.7f} "
            if self.do_short:
                line += f"- adg short {adg_mean_short:.6f} PAD short {PAD_mean_short:.6f} std short "
                line += f"{PAD_std_short:.5f} score short {score_short:.7f}"
            logging.debug(line)
            # check whether initial eval or new harmony
            if "initial_eval_key" in cfg:
                self.hm[cfg["initial_eval_key"]]["long"]["score"] = score_long
                self.hm[
                    cfg["initial_eval_key"]]["short"]["score"] = score_short
            else:
                # check if better than worst in harmony memory
                worst_key_long = sorted(
                    self.hm,
                    key=lambda x: self.hm[x]["long"]["score"]
                    if type(self.hm[x]["long"]["score"]) != str else -np.inf,
                )[-1]
                if self.do_long and score_long < self.hm[worst_key_long][
                        "long"]["score"]:
                    logging.debug(
                        f"improved long harmony, prev score " +
                        f"{self.hm[worst_key_long]['long']['score']:.7f} new score {score_long:.7f} - "
                        + " ".join([
                            str(round_dynamic(e[1], 3))
                            for e in sorted(cfg["long"].items())
                        ]))
                    self.hm[worst_key_long]["long"] = {
                        "config": deepcopy(cfg["long"]),
                        "score": score_long,
                    }
                    json.dump(
                        self.hm,
                        open(
                            f"{self.results_fpath}hm_{cfg['config_no']:06}.json",
                            "w"),
                        indent=4,
                        sort_keys=True,
                    )
                worst_key_short = sorted(
                    self.hm,
                    key=lambda x: self.hm[x]["short"]["score"]
                    if type(self.hm[x]["short"]["score"]) != str else -np.inf,
                )[-1]
                if self.do_short and score_short < self.hm[worst_key_short][
                        "short"]["score"]:
                    logging.debug(
                        f"improved short harmony, prev score " +
                        f"{self.hm[worst_key_short]['short']['score']:.7f} new score {score_short:.7f} - "
                        + " ".join([
                            str(round_dynamic(e[1], 3))
                            for e in sorted(cfg["short"].items())
                        ]), )
                    self.hm[worst_key_short]["short"] = {
                        "config": deepcopy(cfg["short"]),
                        "score": score_short,
                    }
                    json.dump(
                        self.hm,
                        open(
                            f"{self.results_fpath}hm_{cfg['config_no']:06}.json",
                            "w"),
                        indent=4,
                        sort_keys=True,
                    )
            best_key_long = sorted(
                self.hm,
                key=lambda x: self.hm[x]["long"]["score"]
                if type(self.hm[x]["long"]["score"]) != str else np.inf,
            )[0]
            best_key_short = sorted(
                self.hm,
                key=lambda x: self.hm[x]["short"]["score"]
                if type(self.hm[x]["short"]["score"]) != str else np.inf,
            )[0]
            best_config = {
                "long": deepcopy(self.hm[best_key_long]["long"]["config"]),
                "short": deepcopy(self.hm[best_key_short]["short"]["config"]),
            }
            best_config["result"] = {
                "symbol": f"{len(self.symbols)}_symbols",
                "exchange": self.config["exchange"],
                "start_date": self.config["start_date"],
                "end_date": self.config["end_date"],
            }
            tmp_fname = f"{self.results_fpath}{cfg['config_no']:06}_best_config"
            is_better = False
            if self.do_long and score_long <= self.hm[best_key_long]["long"][
                    "score"]:
                is_better = True
                logging.info(
                    f"i{cfg['config_no']} - new best config long, score {score_long:.7f} "
                    +
                    f"adg {adg_mean_long / cfg['long']['wallet_exposure_limit']:.7f} "
                    + f"PAD mean {PAD_mean_long_raw:.7f} " +
                    f"PAD std {PAD_std_long_raw:.5f} adg/DGstd {adg_DGstd_ratios_long_mean:.7f}"
                )
                tmp_fname += "_long"
                json.dump(
                    results,
                    open(
                        f"{self.results_fpath}{cfg['config_no']:06}_result_long.json",
                        "w"),
                    indent=4,
                    sort_keys=True,
                )
            if self.do_short and score_short <= self.hm[best_key_short][
                    "short"]["score"]:
                is_better = True
                logging.info(
                    f"i{cfg['config_no']} - new best config short, score {score_short:.7f} "
                    +
                    f"adg {adg_mean_short / cfg['short']['wallet_exposure_limit']:.7f} "
                    + f"PAD mean {PAD_mean_short_raw:.7f} " +
                    f"PAD std {PAD_std_short_raw:.5f} adg/DGstd {adg_DGstd_ratios_short_mean:.7f}"
                )
                tmp_fname += "_short"
                json.dump(
                    results,
                    open(
                        f"{self.results_fpath}{cfg['config_no']:06}_result_short.json",
                        "w"),
                    indent=4,
                    sort_keys=True,
                )
            if is_better:
                dump_live_config(best_config, tmp_fname + ".json")
            elif cfg["config_no"] % 25 == 0:
                logging.info(f"i{cfg['config_no']}")
            results["config_no"] = cfg["config_no"]
            with open(self.results_fpath + "all_results.txt", "a") as f:
                f.write(
                    json.dumps({
                        "config": {
                            "long": cfg["long"],
                            "short": cfg["short"]
                        },
                        "results": results
                    }) + "\n")
            del self.unfinished_evals[id_key]
        self.workers[wi] = None