Пример #1
0
 def test_4d_hypervolumetric_with_coef(self):
     xin = testing.shaped_arange(self.shape, nlcpy).astype(self.dtype) * 0.1
     n_elem = get_n_stencil_elem(self.stencil_scale)
     if self.coef_array:
         coef_shape = list(xin.shape)
         for an in get_axis_numbers_from_strtype(self.type):
             if abs(an) <= xin.ndim:
                 coef_shape[an] -= 2 * self.stencil_scale
         coef = testing.shaped_arange(
             [
                 n_elem,
             ] + coef_shape, nlcpy, dtype=self.dtype) * 0.01
     else:
         coef = nlcpy.arange(n_elem) * 0.1
         coef = coef.astype(dtype=self.dtype)
     rtol = TOL_SINGLE if self.dtype == numpy.float32 else TOL_DOUBLE
     sca_res, sca_out = compute_with_sca(self.type,
                                         xin,
                                         self.stencil_scale,
                                         coef=coef,
                                         is_out=self.is_out,
                                         prefix=self.prefix,
                                         optimize=self.optimize,
                                         change_coef=self.change_coef)
     naive_res = compute_with_naive(self.type,
                                    xin,
                                    self.stencil_scale,
                                    coef=coef)
     if self.is_out:
         assert id(sca_res) == id(sca_out)
     testing.assert_allclose(sca_res, naive_res, rtol=rtol)
Пример #2
0
    def test_multi_ndarray_5(self, dtype):
        xin = nlcpy.random.rand(5, 5).astype(dtype=dtype)
        yin = nlcpy.random.rand(5, 5).astype(dtype=dtype)
        zin = nlcpy.random.rand(5, 5).astype(dtype=dtype)
        # compute with sca
        dxin, dyin, dzin = nlcpy.sca.create_descriptor((xin, yin, zin))
        desc = (
            dxin[-1, 0] +
            dxin[0, 1] +
            dxin[1, 0] +
            dxin[0, -1] +
            dyin[-1, -1] +
            dzin[1, 1])
        res_sca = nlcpy.sca.create_kernel(desc).execute()
        # compute with naive
        res_naive = nlcpy.zeros((5, 5), dtype=dtype)
        res_naive[1:-1, 1:-1] = (
            xin[:-2, 1:-1] +
            xin[1:-1, 2:] +
            xin[2:, 1:-1] +
            xin[1:-1, :-2] +
            yin[:-2, :-2] +
            zin[2:, 2:])

        rtol = TOL_SINGLE if dtype == numpy.float32 else TOL_DOUBLE
        testing.assert_allclose(res_sca, res_naive, rtol=rtol)
Пример #3
0
 def test_irfftn(self):
     x = random((30, 20, 10))
     assert_allclose(x, np.fft.irfftn(np.fft.rfftn(x)), atol=1e-6)
     assert_allclose(x,
                     np.fft.irfftn(np.fft.rfftn(x, norm="ortho"),
                                   norm="ortho"),
                     atol=1e-6)
Пример #4
0
def test_fft_with_order(dtype, order, fft):
    # Check that FFT/IFFT produces identical results for C, Fortran and
    # non contiguous arrays
    rng = np.random.RandomState(42)
    # X = rng.rand(8, 7, 13).astype(dtype, copy=False)
    X = rng.rand((8, 7, 13)).astype(dtype, copy=False)
    # See discussion in pull/14178
    _tol = 8.0 * np.sqrt(np.log2(X.size)) * np.finfo(X.dtype).eps
    if order == 'F':
        # Y = np.asfortranarray(X)
        Y = np.asarray(X, order='F')
    else:
        # Make a non contiguous array
        # #Y = X[::-1]
        # #X = np.ascontiguousarray(X[::-1])
        Y = X[:-1]
        X = np.asarray(X[:-1], order='C')

    if fft.__name__.endswith('fft'):
        for axis in range(3):
            X_res = fft(X, axis=axis)
            Y_res = fft(Y, axis=axis)
            assert_allclose(X_res, Y_res, atol=_tol, rtol=_tol)
    elif fft.__name__.endswith(('fft2', 'fftn')):
        axes = [(0, 1), (1, 2), (0, 2)]
        if fft.__name__.endswith('fftn'):
            axes.extend([(0, ), (1, ), (2, ), None])
        for ax in axes:
            X_res = fft(X, axes=ax)
            Y_res = fft(Y, axes=ax)
            assert_allclose(X_res, Y_res, atol=_tol, rtol=_tol)
    else:
        raise ValueError()
Пример #5
0
 def test_irfft(self):
     x = random(30)
     assert_allclose(x, np.fft.irfft(np.fft.rfft(x)), atol=1e-6)
     assert_allclose(x,
                     np.fft.irfft(np.fft.rfft(x, norm="ortho"),
                                  norm="ortho"),
                     atol=1e-6)
Пример #6
0
 def test_convert_not_contiguous_2(self, dt1, dt2):
     xbase = nlcpy.random.rand(3, 4, 3, 4).astype(dt1)
     xin = nlcpy.moveaxis(xbase, 0, 2)
     xopt = nlcpy.sca.convert_optimized_array(xin, dtype=dt2)
     testing.assert_allclose(xin, xopt)
     assert xopt.strides != xin.strides
     assert xopt.dtype == dt2
Пример #7
0
 def test_convert_not_contiguous_1(self, dt1, dt2):
     xbase = nlcpy.random.rand(5, 6, 5, 6).astype(dt1)
     xin = xbase[::2, ::3, ::2, ::3]
     xopt = nlcpy.sca.convert_optimized_array(xin, dtype=dt2)
     testing.assert_allclose(xin, xopt)
     assert xopt.strides != xin.strides
     assert xopt.dtype == dt2
Пример #8
0
 def test_ftrace_f(self):
     file_name = './ftrace.out'
     if os.path.exists(file_name):
         os.remove(file_name)
     _helper1(self,
              _test_ve_adr_f,
              '/opt/nec/ve/bin/nfort',
              'test_sum_',
              _ftypes[self.dtype], (uint64, uint64, uint64, uint64),
              uint64,
              ext_cflags=('-fpp', ),
              ftrace=True)
     x1, x2, y = _prep(self.dtype)
     err = self.kern(x1.ve_adr,
                     x2.ve_adr,
                     y.ve_adr,
                     y.size,
                     sync=self.sync,
                     callback=self.callback)
     testing.assert_allclose(y,
                             x1 + x2,
                             err_msg='File-ID: {}'.format(self.lib.id))
     if self.sync:
         assert err == 0
     nlcpy.jit.unload_library(self.lib)
     assert os.path.exists(file_name)
     assert os.path.getsize(file_name) > 0
     os.remove(file_name)
Пример #9
0
 def test_assign_numpy_factor(self, dtype):
     xin = nlcpy.arange(10).astype(dtype)
     dx = nlcpy.sca.create_descriptor(xin)
     coef = numpy.array(-1, dtype=dtype)
     desc = dx[0] * coef
     res_sca = nlcpy.sca.create_kernel(desc).execute()
     res_naive = xin * coef
     testing.assert_allclose(res_sca, res_naive)
Пример #10
0
 def test_ifft2(self):
     x = random((30, 20)) + 1j * random((30, 20))
     assert_allclose(np.fft.ifft(np.fft.ifft(x, axis=1), axis=0),
                     np.fft.ifft2(x),
                     atol=1e-6)
     assert_allclose(np.fft.ifft2(x) * np.sqrt(30 * 20),
                     np.fft.ifft2(x, norm="ortho"),
                     atol=1e-6)
Пример #11
0
 def _test_axes(self, op):
     x = random((30, 20, 10))
     axes = [(0, 1, 2), (0, 2, 1), (1, 0, 2), (1, 2, 0), (2, 0, 1),
             (2, 1, 0)]
     for a in axes:
         op_tr = op(np.transpose(x, a))
         tr_op = np.transpose(op(x, axes=a), a)
         assert_allclose(op_tr, tr_op, atol=1e-6)
Пример #12
0
 def test_identity(self):
     maxlen = 512
     x = random(maxlen) + 1j * random(maxlen)
     # xr = random(maxlen)  # local variable 'xr' is assigned to but never used
     for i in range(1, maxlen):
         assert_allclose(np.fft.ifft(np.fft.fft(x[0:i])),
                         x[0:i],
                         atol=1e-12)
Пример #13
0
 def test_hfft(self):
     x = random(14) + 1j * random(14)
     x_herm = np.concatenate((random(1), x, random(1)))
     # x = np.concatenate((x_herm, x[::-1].conj()))
     x = np.concatenate((x_herm, np.conj(x[::-1])))
     assert_allclose(np.fft.fft(x), np.fft.hfft(x_herm), atol=1e-6)
     assert_allclose(np.fft.hfft(x_herm) / np.sqrt(30),
                     np.fft.hfft(x_herm, norm="ortho"),
                     atol=1e-6)
Пример #14
0
 def test_ifft(self, norm):
     x = random(30) + 1j * random(30)
     assert_allclose(x,
                     np.fft.ifft(np.fft.fft(x, norm=norm), norm=norm),
                     atol=1e-6)
     # Ensure we get the correct error message
     with pytest.raises(ValueError):
         # ,match='Invalid number of FFT data points'):
         np.fft.ifft([], norm=norm)
Пример #15
0
 def test_autogen_multi_ndarray_2d_same_shape(self, dtype):
     xin = nlcpy.random.rand(5, 5).astype(dtype=dtype)
     yin = nlcpy.random.rand(5, 5).astype(dtype=dtype)
     dxin, dyin = nlcpy.sca.create_descriptor((xin, yin))
     res_sca = nlcpy.sca.create_kernel(dxin[...] + dyin[...]).execute()
     assert id(xin) != id(res_sca)
     assert id(yin) != id(res_sca)
     res_naive = xin + yin
     testing.assert_allclose(res_sca, res_naive)
Пример #16
0
 def test_fftn(self):
     x = random((30, 20, 10)) + 1j * random((30, 20, 10))
     assert_allclose(np.fft.fft(np.fft.fft(np.fft.fft(x, axis=2), axis=1),
                                axis=0),
                     np.fft.fftn(x),
                     atol=1e-6)
     assert_allclose(np.fft.fftn(x) / np.sqrt(30 * 20 * 10),
                     np.fft.fftn(x, norm="ortho"),
                     atol=1e-6)
Пример #17
0
 def test_autogen_multi_ndarray_4d_diff_shape(self, dtype):
     xin = nlcpy.random.rand(5, 4, 6, 7).astype(dtype=dtype)
     yin = nlcpy.random.rand(4, 6, 7, 3).astype(dtype=dtype)
     dxin, dyin = nlcpy.sca.create_descriptor((xin, yin))
     res_sca = nlcpy.sca.create_kernel(dxin[...] + dyin[...]).execute()
     assert id(xin) != id(res_sca)
     assert id(yin) != id(res_sca)
     res_naive = xin[:4, :, :, :3] + yin[:, :4, :6, :]
     testing.assert_allclose(res_sca, res_naive)
Пример #18
0
 def test_asl_native_f(self):
     self._helper(_test_asl_native_f, '/opt/nec/ve/bin/nfort', 'test_dbgmsm_',
                  (uint64, uint64, int64, int64, int64), int64)
     lna, n, m, ab, ipvt = self._prep()
     err = self.kern(ab.ve_adr, ipvt.ve_adr, lna, n, m,
                     sync=self.sync, callback=self.callback)
     testing.assert_allclose(ab[:n, n:n + m], self._make_ref(), rtol=1e-12,
                             err_msg='File-ID: {}'.format(self.lib.id))
     if self.sync:
         assert err == 0
Пример #19
0
 def test_ve_array_cpp(self):
     _helper1(self, _test_ve_array_cpp, '/opt/nec/ve/bin/nc++', 'test_sum',
              _cpptypes[self.dtype], (void_p, void_p, void_p), uint64)
     x1, x2, y = _prep(self.dtype)
     err = self.kern(x1, x2, y, sync=self.sync, callback=self.callback)
     testing.assert_allclose(y,
                             x1 + x2,
                             err_msg='File-ID: {}'.format(self.lib.id))
     if self.sync:
         assert err == 0
Пример #20
0
 def test_assign_multiple_coef_for_multiple_description(self, dtype):
     xin = nlcpy.arange(10).astype(dtype)
     dx = nlcpy.sca.create_descriptor(xin)
     coef1 = nlcpy.array(-1, dtype=dtype)
     coef2 = nlcpy.array(2, dtype=dtype)
     coef3 = nlcpy.array(3, dtype=dtype)
     desc = dx[0] * coef1 + dx[0] * coef2 + dx[0] * coef3
     res_sca = nlcpy.sca.create_kernel(desc).execute()
     res_naive = xin * coef1 + xin * coef2 + xin * coef3
     testing.assert_allclose(res_sca, res_naive)
Пример #21
0
 def test_rfft(self):
     x = random(30)
     for n in [x.size, 2 * x.size]:
         for norm in [None, 'ortho']:
             assert_allclose(np.fft.fft(x, n=n, norm=norm)[:(n // 2 + 1)],
                             np.fft.rfft(x, n=n, norm=norm),
                             atol=1e-6)
         assert_allclose(np.fft.rfft(x, n=n) / np.sqrt(n),
                         np.fft.rfft(x, n=n, norm="ortho"),
                         atol=1e-6)
Пример #22
0
 def test_heterosolver_cpp(self):
     self._helper(_test_heterosolver_cpp, '/opt/nec/ve/bin/nc++',
                  'HS_csr_unsym_ind_0',
                  (void_p,), int64)
     x = self._prep()
     err = self.kern(veo.OnStack(x, inout=veo.INTENT_OUT),
                     sync=self.sync, callback=self.callback)
     testing.assert_allclose(x, self._make_ref(), rtol=1e-12,
                             err_msg='File-ID: {}'.format(self.lib.id))
     if self.sync:
         assert err == 0
Пример #23
0
 def test_sblas_c(self):
     self._helper(_test_sblas_c, '/opt/nec/ve/bin/ncc',
                  'sblas_mv_csr_ind_0', (void_p, ), int64)
     y = self._prep()
     err = self.kern(veo.OnStack(y, inout=veo.INTENT_OUT),
                     sync=self.sync,
                     callback=self.callback)
     testing.assert_allclose(y,
                             self._make_ref(),
                             rtol=1e-12,
                             err_msg='File-ID: {}'.format(self.lib.id))
     if self.sync:
         assert err == 0
Пример #24
0
    def test_multi_ndarray_3(self, dtype):
        xin = nlcpy.random.rand(7, 7).astype(dtype=dtype)
        yin = nlcpy.random.rand(6, 8).astype(dtype=dtype)
        # compute with sca
        dxin, dyin = nlcpy.sca.create_descriptor((xin, yin))
        desc = dxin[-2, 2] + dxin[1, -1] + dyin[0, 0]
        res_sca = nlcpy.sca.create_kernel(desc).execute()
        # compute with naive
        x_tmp = xin[:6, :]
        y_tmp = yin[:, :7]
        res_naive = nlcpy.zeros((6, 7), dtype=dtype)
        res_naive[2:-1, 1:-2] = x_tmp[:-3, 3:] + x_tmp[3:, :-3] + y_tmp[2:-1, 1:-2]

        rtol = TOL_SINGLE if dtype == numpy.float32 else TOL_DOUBLE
        testing.assert_allclose(res_sca, res_naive, rtol=rtol)
Пример #25
0
 def test_4d_hypervolumetric(self):
     nlcpy.random.seed(0)
     xin = testing.shaped_random(self.shape, nlcpy).astype(self.dtype)
     rtol = TOL_SINGLE if self.dtype == numpy.float32 else TOL_DOUBLE
     sca_res, sca_out = compute_with_sca(
         self.type,
         xin,
         self.stencil_scale,
         is_out=self.is_out,
         optimize=self.optimize,
     )
     naive_res = compute_with_naive(self.type, xin, self.stencil_scale)
     if self.is_out:
         assert id(sca_res) == id(sca_out)
     testing.assert_allclose(sca_res, naive_res, rtol=rtol)
Пример #26
0
 def test_from_so_c(self):
     _helper2(self, _test_ve_adr_c, '/opt/nec/ve/bin/ncc', 'test_sum',
              _ctypes[self.dtype], (uint64, uint64, uint64, uint64), uint64)
     x1, x2, y = _prep(self.dtype)
     err = self.kern(x1.ve_adr,
                     x2.ve_adr,
                     y.ve_adr,
                     y.size,
                     sync=self.sync,
                     callback=self.callback)
     testing.assert_allclose(y,
                             x1 + x2,
                             err_msg='File-ID: {}'.format(self.lib.id))
     if self.sync:
         assert err == 0
Пример #27
0
    def test_multi_ndarray_2(self, dtype):
        xin = nlcpy.random.rand(5, 5).astype(dtype=dtype)
        yin = nlcpy.random.rand(7, 7).astype(dtype=dtype)
        # compute with sca
        dxin, dyin = nlcpy.sca.create_descriptor((xin, yin))
        desc = dxin[-1, 1] + dxin[1, -1] + dyin[-1, -1] + dyin[1, 1]
        res_sca = nlcpy.sca.create_kernel(desc).execute()
        # compute with naive
        x_tmp = xin[:, :]
        y_tmp = yin[:5, :5]
        res_naive = nlcpy.zeros((5, 5), dtype=dtype)
        res_naive[1:-1, 1:-1] = (x_tmp[:-2, 2:] + x_tmp[2:, :-2] +
                                 y_tmp[:-2, :-2] + y_tmp[2:, 2:])

        rtol = TOL_SINGLE if dtype == numpy.float32 else TOL_DOUBLE
        testing.assert_allclose(res_sca, res_naive, rtol=rtol)
Пример #28
0
 def test_3d_volumetric_with_factor(self):
     xin = testing.shaped_arange(self.shape, nlcpy).astype(self.dtype) * 0.1
     n_elem = get_n_stencil_elem(self.stencil_scale)
     factor = (nlcpy.arange(n_elem) * 0.1).tolist()
     rtol = TOL_SINGLE if self.dtype == numpy.float32 else TOL_DOUBLE
     sca_res, sca_out = compute_with_sca(
         self.type,
         xin,
         self.stencil_scale,
         factor=factor,
         is_out=self.is_out,
         prefix=self.prefix,
         optimize=self.optimize
     )
     naive_res = compute_with_naive(self.type, xin, self.stencil_scale, factor=factor)
     if self.is_out:
         assert id(sca_res) == id(sca_out)
     testing.assert_allclose(sca_res, naive_res, rtol=rtol)
Пример #29
0
 def test_basic_f(self):
     _helper1(self,
              _test_ve_adr_f,
              '/opt/nec/ve/bin/nfort',
              'test_sum_',
              _ftypes[self.dtype], (uint64, uint64, uint64, uint64),
              uint64,
              ext_cflags=('-fpp', ))
     x1, x2, y = _prep(self.dtype)
     err = self.kern(x1.ve_adr,
                     x2.ve_adr,
                     y.ve_adr,
                     y.size,
                     sync=self.sync,
                     callback=self.callback)
     testing.assert_allclose(y,
                             x1 + x2,
                             err_msg='File-ID: {}'.format(self.lib.id))
     if self.sync:
         assert err == 0
Пример #30
0
 def test_lapack_f(self):
     self._helper(_test_lapack_f, '/opt/nec/ve/bin/nfort', 'test_dgesv_',
                  (int64, int64, uint64, int64, uint64, uint64, int64),
                  int64)
     lna, n, lnb, m, a, b, ipvt = self._prep()
     err = self.kern(n,
                     m,
                     a.ve_adr,
                     lna,
                     ipvt.ve_adr,
                     b.ve_adr,
                     lnb,
                     sync=self.sync,
                     callback=self.callback)
     testing.assert_allclose(b[:n, :],
                             self._make_ref(),
                             rtol=1e-12,
                             err_msg='File-ID: {}'.format(self.lib.id))
     if self.sync:
         assert err == 0