Пример #1
0
     ('chapters', 'NNS')]
# forth
chunker = RegexpParser(r'''
NP:
    {<DT><NN.*><.*>*<NN.*>}
    }<VB.*>{''')

print(chunker.parse(s))

# back
t = Tree('S', s)
cs = ChunkString(t)
print(cs)

ur = ChunkRule('<DT><NN.*><.*>*<NN.*>', 'chunk determiners and nouns')
ur.apply(cs)
print(cs)

ir = ChinkRule('<VB.*>', 'chink verbs')
ir.apply(cs)
print(cs)

print(cs.to_chunkstruct())
# cs.to_chunkstruct().draw()

chunker = RegexpChunkParser([ur, ir])
print(chunker.parse(t))

# set chunk name
chunker = RegexpChunkParser([ur, ir], chunk_label='CP')
print(chunker.parse(t))
Пример #2
0
# Loading Libraries
from nltk.chunk.regexp import ChunkString, ChunkRule, ChinkRule
from nltk.tree import Tree

# ChunkString() starts with the flat tree
tree = Tree('S', [('the', 'DT'), ('book', 'NN'), ('has', 'VBZ'),
                  ('many', 'JJ'), ('chapters', 'NNS')])

# Initializing ChunkString()
chunk_string = ChunkString(tree)
print("Chunk String : ", chunk_string)

# Initializing ChunkRule
chunk_rule = ChunkRule('<DT><NN.*><.*>*<NN.*>', 'chunk determiners and nouns')
chunk_rule.apply(chunk_string)
print("\nApplied ChunkRule : ", chunk_string)

# Another ChinkRule
ir = ChinkRule('<VB.*>', 'chink verbs')
ir.apply(chunk_string)
print("\nApplied ChinkRule : ", chunk_string, "\n")

# Back to chunk sub-tree
chunk_string.to_chunkstruct()
Пример #3
0
# forth
chunker = RegexpParser(r'''
NP:
    {<DT><NN.*><.*>*<NN.*>}
    }<VB.*>{'''
)

print(chunker.parse(s))

# back
t = Tree('S', s)
cs = ChunkString(t)
print(cs)

ur = ChunkRule('<DT><NN.*><.*>*<NN.*>', 'chunk determiners and nouns')
ur.apply(cs)
print(cs)

ir = ChinkRule('<VB.*>', 'chink verbs')
ir.apply(cs)
print(cs)

print(cs.to_chunkstruct())
# cs.to_chunkstruct().draw()

chunker = RegexpChunkParser([ur, ir])
print(chunker.parse(t))

# set chunk name
chunker = RegexpChunkParser([ur, ir], chunk_label='CP')
print(chunker.parse(t))