Пример #1
0
 def __init__(self, name, description, subsets):
     self._name = name
     self._description = description
     self._negated = False
     self._pairs = set()
     self._subsets = subsets
     desc = list(tokenize.regexp(description, _kimmo_rule))
     self._parse(desc)
Пример #2
0
 def __init__(self, name, description, subsets):
     self._name = name
     self._description = description
     self._negated = False
     self._pairs = set()
     self._subsets = subsets
     desc = list(tokenize.regexp(description, _kimmo_rule))
     self._parse(desc)
Пример #3
0
def re2nfa(fsa, re):
    tokens = tokenize.regexp(re, pattern=r'.')
    tree = _parser.parse(tokens)
    if tree is None: raise ValueError('Bad Regexp')
    state = re2nfa_build(fsa, fsa.start(), tree)
    fsa.set_final([state])
Пример #4
0
def re2nfa(fsa, re):
    tokens = tokenize.regexp(re, pattern=r'.')
    tree = _parser.parse(tokens)
    if tree is None: raise ValueError('Bad Regexp')
    state = re2nfa_build(fsa, fsa.start(), tree)
    fsa.set_final([state])
Пример #5
0
    def parse(self, p_string):
        """
        Parses a string and stores the resulting hierarchy of "domains"
        "hierarchies" and "tables"

        For the sake of NLP I've parsed the string using the nltk 
        context free grammar library.

        A query is a "sentence" and can either be a domain, hierarchy or a table.
        A domain is simply a word.
        A hierarchy is expressed as "domain/domain"
        A table is exressed as "table(sentence, sentence, sentence)"

        Internally the query is represented as a nltk.parse.tree

        Process:
          1. string is tokenized
          2. develop a context free grammar
          3. parse
          4. convert to a tree representation
        """
        self.nltktree = None

        # Store the query string
        self.string = p_string

        # Tokenize the query string, allowing only strings, parentheses,
        # forward slashes and commas.
        re_all = r'table[(]|\,|[)]|[/]|\w+'
        data_tokens = tokenize.regexp(self.string, re_all)

        # Develop a context free grammar
        # S = sentence, T = table, H = hierarchy, D = domain
        O, T, H, D = cfg.nonterminals('O, T, H, D')

        # Specify the grammar
        productions = (
            # A sentence can be either a table, hierarchy or domain
            cfg.Production(O, [D]),
            cfg.Production(O, [H]),
            cfg.Production(O, [T]),

            # A table must be the following sequence:
            # "table(", sentence, comma, sentence, comma, sentence, ")"
            cfg.Production(T, ['table(', O, ',', O, ',', O, ')']),

            # A hierarchy must be the following sequence:
            # domain, forward slash, domain
            cfg.Production(H, [D, '/', D]),
            # domain, forward slash, another operator
            cfg.Production(H, [D, '/', O]))

        # Add domains to the cfg productions
        # A domain is a token that is entirely word chars
        re_domain = compile(r'^\w+$')
        # Try every token and add if it matches the above regular expression
        for tok in data_tokens:
            if re_domain.match(tok):
                prod = cfg.Production(D, [tok]),
                productions = productions + prod

        # Make a grammar out of our productions
        grammar = cfg.Grammar(O, productions)
        rd_parser = parse.RecursiveDescentParser(grammar)

        # Tokens need to be redefined.
        # It disappears after first use, and I don't know why.
        tokens = tokenize.regexp_tokenize(self.string, re_all)
        toklist = list(tokens)

        # Store the parsing.
        # Only the first one, as the grammar should be completely nonambiguous.
        try:
            self.parseList = rd_parser.get_parse_list(toklist)[0]
        except IndexError:
            print "Could not parse query."
            return

        # Set the nltk.parse.tree tree for this query to the global sentence
        string = str(self.parseList)
        string2 = string.replace(":", "").replace("')'", "").replace(
            "table(", "").replace("','", "").replace("'", "").replace("/", "")
        self.nltktree = parse.tree.bracket_parse(string2)

        # Store the resulting nltk.parse.tree tree
        self.parseTree = QuerySentence(self.nltktree)
        self.xml = self.parseTree.toXML()
def tokenize_words(input):
    input = input.lower()
    tokenizer = regexp(r'w+')
    tokens = tokenizer.tokenize(input)
    filtered = filter(lambda token: token not in stopwords.words('english'), tokens)
    return ''.join(filtered)
Пример #7
0
    def parse(self, p_string):
        """
        Parses a string and stores the resulting hierarchy of "domains"
        "hierarchies" and "tables"

        For the sake of NLP I've parsed the string using the nltk 
        context free grammar library.

        A query is a "sentence" and can either be a domain, hierarchy or a table.
        A domain is simply a word.
        A hierarchy is expressed as "domain/domain"
        A table is exressed as "table(sentence, sentence, sentence)"

        Internally the query is represented as a nltk.parse.tree

        Process:
          1. string is tokenized
          2. develop a context free grammar
          3. parse
          4. convert to a tree representation
        """
        self.nltktree = None

        # Store the query string
        self.string = p_string

        # Tokenize the query string, allowing only strings, parentheses,
        # forward slashes and commas.
        re_all = r'table[(]|\,|[)]|[/]|\w+'
        data_tokens = tokenize.regexp(self.string, re_all)

        # Develop a context free grammar
        # S = sentence, T = table, H = hierarchy, D = domain
        O, T, H, D = cfg.nonterminals('O, T, H, D')

        # Specify the grammar
        productions = (
            # A sentence can be either a table, hierarchy or domain
            cfg.Production(O, [D]), cfg.Production(O, [H]), cfg.Production(O, [T]),
            
            # A table must be the following sequence:
            # "table(", sentence, comma, sentence, comma, sentence, ")" 
            cfg.Production(T, ['table(', O, ',', O, ',', O, ')']),

            # A hierarchy must be the following sequence:
            # domain, forward slash, domain
            cfg.Production(H, [D, '/', D]),
            # domain, forward slash, another operator
            cfg.Production(H, [D, '/', O])
        )

        # Add domains to the cfg productions
        # A domain is a token that is entirely word chars
        re_domain = compile(r'^\w+$') 
        # Try every token and add if it matches the above regular expression
        for tok in data_tokens:
            if re_domain.match(tok):
                prod = cfg.Production(D,[tok]),
                productions = productions + prod

        # Make a grammar out of our productions
        grammar = cfg.Grammar(O, productions)
        rd_parser = parse.RecursiveDescentParser(grammar)
       
        # Tokens need to be redefined. 
        # It disappears after first use, and I don't know why.
        tokens = tokenize.regexp_tokenize(self.string, re_all)
        toklist = list(tokens)

        # Store the parsing. 
        # Only the first one, as the grammar should be completely nonambiguous.
        try:
            self.parseList = rd_parser.get_parse_list(toklist)[0]
        except IndexError: 
            print "Could not parse query."
            return

        # Set the nltk.parse.tree tree for this query to the global sentence
        string = str(self.parseList)
        string2 = string.replace(":","").replace("')'","").replace("table(","").replace("','","").replace("'","").replace("/","")
        self.nltktree = parse.tree.bracket_parse(string2)
        
        # Store the resulting nltk.parse.tree tree
        self.parseTree = QuerySentence(self.nltktree)
        self.xml = self.parseTree.toXML()