def test_prob_t_a_given_s(self): # arrange src_sentence = ["ich", "esse", "ja", "gern", "räucherschinken"] trg_sentence = ["i", "love", "to", "eat", "smoked", "ham"] corpus = [AlignedSent(trg_sentence, src_sentence)] alignment_info = AlignmentInfo( (0, 1, 4, 0, 2, 5, 5), [None] + src_sentence, ["UNUSED"] + trg_sentence, [[3], [1], [4], [], [2], [5, 6]], ) distortion_table = defaultdict( lambda: defaultdict(lambda: defaultdict(lambda: defaultdict(float))) ) distortion_table[1][1][5][6] = 0.97 # i -> ich distortion_table[2][4][5][6] = 0.97 # love -> gern distortion_table[3][0][5][6] = 0.97 # to -> NULL distortion_table[4][2][5][6] = 0.97 # eat -> esse distortion_table[5][5][5][6] = 0.97 # smoked -> räucherschinken distortion_table[6][5][5][6] = 0.97 # ham -> räucherschinken translation_table = defaultdict(lambda: defaultdict(float)) translation_table["i"]["ich"] = 0.98 translation_table["love"]["gern"] = 0.98 translation_table["to"][None] = 0.98 translation_table["eat"]["esse"] = 0.98 translation_table["smoked"]["räucherschinken"] = 0.98 translation_table["ham"]["räucherschinken"] = 0.98 fertility_table = defaultdict(lambda: defaultdict(float)) fertility_table[1]["ich"] = 0.99 fertility_table[1]["esse"] = 0.99 fertility_table[0]["ja"] = 0.99 fertility_table[1]["gern"] = 0.99 fertility_table[2]["räucherschinken"] = 0.999 fertility_table[1][None] = 0.99 probabilities = { "p1": 0.167, "translation_table": translation_table, "distortion_table": distortion_table, "fertility_table": fertility_table, "alignment_table": None, } model3 = IBMModel3(corpus, 0, probabilities) # act probability = model3.prob_t_a_given_s(alignment_info) # assert null_generation = 5 * pow(0.167, 1) * pow(0.833, 4) fertility = 1 * 0.99 * 1 * 0.99 * 1 * 0.99 * 1 * 0.99 * 2 * 0.999 lexical_translation = 0.98 * 0.98 * 0.98 * 0.98 * 0.98 * 0.98 distortion = 0.97 * 0.97 * 0.97 * 0.97 * 0.97 * 0.97 expected_probability = ( null_generation * fertility * lexical_translation * distortion ) self.assertEqual(round(probability, 4), round(expected_probability, 4))
def test_prob_t_a_given_s(self): # arrange src_sentence = ["ich", 'esse', 'ja', 'gern', 'räucherschinken'] trg_sentence = ['i', 'love', 'to', 'eat', 'smoked', 'ham'] corpus = [AlignedSent(trg_sentence, src_sentence)] alignment_info = AlignmentInfo( (0, 1, 4, 0, 2, 5, 5), [None] + src_sentence, ['UNUSED'] + trg_sentence, [[3], [1], [4], [], [2], [5, 6]], ) distortion_table = defaultdict(lambda: defaultdict(lambda: defaultdict( lambda: defaultdict(float)))) distortion_table[1][1][5][6] = 0.97 # i -> ich distortion_table[2][4][5][6] = 0.97 # love -> gern distortion_table[3][0][5][6] = 0.97 # to -> NULL distortion_table[4][2][5][6] = 0.97 # eat -> esse distortion_table[5][5][5][6] = 0.97 # smoked -> räucherschinken distortion_table[6][5][5][6] = 0.97 # ham -> räucherschinken translation_table = defaultdict(lambda: defaultdict(float)) translation_table['i']['ich'] = 0.98 translation_table['love']['gern'] = 0.98 translation_table['to'][None] = 0.98 translation_table['eat']['esse'] = 0.98 translation_table['smoked']['räucherschinken'] = 0.98 translation_table['ham']['räucherschinken'] = 0.98 fertility_table = defaultdict(lambda: defaultdict(float)) fertility_table[1]['ich'] = 0.99 fertility_table[1]['esse'] = 0.99 fertility_table[0]['ja'] = 0.99 fertility_table[1]['gern'] = 0.99 fertility_table[2]['räucherschinken'] = 0.999 fertility_table[1][None] = 0.99 probabilities = { 'p1': 0.167, 'translation_table': translation_table, 'distortion_table': distortion_table, 'fertility_table': fertility_table, 'alignment_table': None, } model3 = IBMModel3(corpus, 0, probabilities) # act probability = model3.prob_t_a_given_s(alignment_info) # assert null_generation = 5 * pow(0.167, 1) * pow(0.833, 4) fertility = 1 * 0.99 * 1 * 0.99 * 1 * 0.99 * 1 * 0.99 * 2 * 0.999 lexical_translation = 0.98 * 0.98 * 0.98 * 0.98 * 0.98 * 0.98 distortion = 0.97 * 0.97 * 0.97 * 0.97 * 0.97 * 0.97 expected_probability = (null_generation * fertility * lexical_translation * distortion) self.assertEqual(round(probability, 4), round(expected_probability, 4))
def test_set_uniform_distortion_probabilities(self): # arrange corpus = [ AlignedSent(['ham', 'eggs'], ['schinken', 'schinken', 'eier']), AlignedSent(['spam', 'spam', 'spam', 'spam'], ['spam', 'spam']), ] model3 = IBMModel3(corpus, 0) # act model3.set_uniform_probabilities(corpus) # assert # expected_prob = 1.0 / length of target sentence self.assertEqual(model3.distortion_table[1][0][3][2], 1.0 / 2) self.assertEqual(model3.distortion_table[4][2][2][4], 1.0 / 4)
def test_set_uniform_distortion_probabilities_of_non_domain_values(self): # arrange corpus = [ AlignedSent(['ham', 'eggs'], ['schinken', 'schinken', 'eier']), AlignedSent(['spam', 'spam', 'spam', 'spam'], ['spam', 'spam']), ] model3 = IBMModel3(corpus, 0) # act model3.set_uniform_probabilities(corpus) # assert # examine i and j values that are not in the training data domain self.assertEqual(model3.distortion_table[0][0][3][2], IBMModel.MIN_PROB) self.assertEqual(model3.distortion_table[9][2][2][4], IBMModel.MIN_PROB) self.assertEqual(model3.distortion_table[2][9][2][4], IBMModel.MIN_PROB)
def __init__( self, sentence_aligned_corpus, iterations, source_word_classes, target_word_classes, probability_tables=None, ): """ Train on ``sentence_aligned_corpus`` and create a lexical translation model, distortion models, a fertility model, and a model for generating NULL-aligned words. Translation direction is from ``AlignedSent.mots`` to ``AlignedSent.words``. :param sentence_aligned_corpus: Sentence-aligned parallel corpus :type sentence_aligned_corpus: list(AlignedSent) :param iterations: Number of iterations to run training algorithm :type iterations: int :param source_word_classes: Lookup table that maps a source word to its word class, the latter represented by an integer id :type source_word_classes: dict[str]: int :param target_word_classes: Lookup table that maps a target word to its word class, the latter represented by an integer id :type target_word_classes: dict[str]: int :param probability_tables: Optional. Use this to pass in custom probability values. If not specified, probabilities will be set to a uniform distribution, or some other sensible value. If specified, all the following entries must be present: ``translation_table``, ``alignment_table``, ``fertility_table``, ``p1``, ``head_distortion_table``, ``non_head_distortion_table``. See ``IBMModel`` and ``IBMModel4`` for the type and purpose of these tables. :type probability_tables: dict[str]: object """ super(IBMModel4, self).__init__(sentence_aligned_corpus) self.reset_probabilities() self.src_classes = source_word_classes self.trg_classes = target_word_classes if probability_tables is None: # Get probabilities from IBM model 3 ibm3 = IBMModel3(sentence_aligned_corpus, iterations) self.translation_table = ibm3.translation_table self.alignment_table = ibm3.alignment_table self.fertility_table = ibm3.fertility_table self.p1 = ibm3.p1 self.set_uniform_probabilities(sentence_aligned_corpus) else: # Set user-defined probabilities self.translation_table = probability_tables["translation_table"] self.alignment_table = probability_tables["alignment_table"] self.fertility_table = probability_tables["fertility_table"] self.p1 = probability_tables["p1"] self.head_distortion_table = probability_tables[ "head_distortion_table"] self.non_head_distortion_table = probability_tables[ "non_head_distortion_table"] for n in range(0, iterations): self.train(sentence_aligned_corpus)
# Structures: 1-paragraph alignment only, 2-sentence alignment based on paragraphs, 3-direct sentence alignment structures = {1: "para", 2: "psent", 3: "sent"} struct_num = 1 for i in range(1, 44): en_path = 'translation-dashboard/data/en-ba-' + structures[ struct_num] + '-align/en-chapter-' + str(i) + '.txt' ba_path = 'translation-dashboard/data/en-ba-' + structures[ struct_num] + '-align/ba-chapter-' + str(i) + '.txt' aligned_paras.extend(para_as_sent(en_path, ba_path)) wc += word_count(en_path) # print (wc.freq("i")) num_iterations = 20 start = timer() model = IBMModel3(aligned_paras, num_iterations) end = timer() timeelapsed = end - start # timer will only evaluate time taken to run IBM Models with open('align_models/ibm-model-runtimes.csv', 'a', encoding='utf-8') as output_file: output_writer = csv.writer(output_file, delimiter='\t') output_writer.writerow([ "3", str(num_iterations), timeelapsed, socket.gethostname(), 'struct' + str(struct_num) ]) output_file.close() # Save model and word count with open('align_models/ibm3.model', 'wb') as m_file:
def generateModels(qtype): # dictionary, pwC, pdf = prepare_corpus("data/linkSO",recompute=False) datadir = "data/linkSO" all_questions = pd.read_csv(join(datadir, "linkso/topublish/" + qtype + "/" + qtype + "_qid2all.txt"), sep='\t', \ names=['qID', 'qHeader', 'qDescription', 'topVotedAnswer', 'type']) similar_docs_file = pd.read_csv(join(datadir, "linkso/topublish/" + qtype + "/" + qtype + "_cosidf.txt"), sep='\t', \ names=['qID1', 'qID2', 'score', 'label'], skiprows=1) filtered_rows = similar_docs_file[similar_docs_file[label] == 1] filtered_columns = filtered_rows.filter(items=[question_id1, question_id2]) bitext_qH_qH = [] bitext_qD_qD = [] bitext_qHqD_qHqD = [] loop_counter = 0 for each_row in filtered_columns.itertuples(): q1ID = each_row[1] q2ID = each_row[2] q1_row = all_questions.loc[all_questions[question_id] == q1ID] q1header = str(q1_row[question_header].values[0]).split() q1desc = str(q1_row[question_description].values[0]).split() q1ans = str(q1_row[top_answer].values[0]).split() q2_row = all_questions.loc[all_questions[question_id] == q2ID] q2header = str(q2_row[question_header].values[0]).split() q2desc = str(q2_row[question_description].values[0]).split() q2ans = str(q2_row[top_answer].values[0]).split() # print("\nQ1 Header:", q1header) # print("Q1 Desc:", q1desc) # print("Q1 Answer:", q1ans) # print("Q2:", q2header) # print("Q2 Desc:", q2desc) # print("Q2 Answer:", q2ans) bitext_qH_qH.append(AlignedSent(q1header, q2header)) bitext_qD_qD.append(AlignedSent(q1desc, q2desc)) bitext_qHqD_qHqD.append(AlignedSent(q1header + q1desc, q2header + q2desc)) loop_counter += 1 # Model 1 print("Training Model1 QH QH..") start = time.time() ibmQH = IBMModel1(bitext_qH_qH, 50) print("Model QH QH trained.. In", time.time() - start, " seconds..") with open('modelQHQH_Model1_' + qtype + '.pk', 'wb') as fout: pickle.dump(ibmQH, fout) print("Training Model1 QD QD..") start = time.time() ibmQD = IBMModel1(bitext_qD_qD, 50) print("Model QD QD trained.. In", time.time() - start, " seconds..") with open('modelQDQD_Model1_' + qtype + '.pk', 'wb') as fout: pickle.dump(ibmQD, fout) print("Training Model1 QHQD QHQD..") start = time.time() ibmQHQD = IBMModel1(bitext_qHqD_qHqD, 50) print("Model QH QH trained.. In", time.time() - start, " seconds..") with open('modelQHQD_Model1_' + qtype + '.pk', 'wb') as fout: pickle.dump(ibmQHQD, fout) print(round(ibmQH.translation_table['html']['web'], 10)) print(round(ibmQD.translation_table['html']['web'], 10)) print(round(ibmQHQD.translation_table['html']['web'], 10)) # Model 2 print("Training Model2 QH QH..") start = time.time() ibmQH = IBMModel2(bitext_qH_qH, 50) print("Model QH QH trained.. In", time.time() - start, " seconds..") with open('modelQHQH_Model2_' + qtype + '.pk', 'wb') as fout: pickle.dump(ibmQH, fout) print("Training Model2 QD QD..") start = time.time() ibmQD = IBMModel2(bitext_qD_qD, 50) print("Model QD QD trained.. In", time.time() - start, " seconds..") with open('modelQDQD_Model2_' + qtype + '.pk', 'wb') as fout: pickle.dump(ibmQD, fout) print("Training Model2 QHQD QHQD..") start = time.time() ibmQHQD = IBMModel2(bitext_qHqD_qHqD, 50) print("Model QH QH trained.. In", time.time() - start, " seconds..") with open('modelQHQD_Model2_' + qtype + '.pk', 'wb') as fout: pickle.dump(ibmQHQD, fout) print(round(ibmQH.translation_table['html']['web'], 10)) print(round(ibmQD.translation_table['html']['web'], 10)) print(round(ibmQHQD.translation_table['html']['web'], 10)) # Model 3 print("Training Model3 QH QH..") start = time.time() ibmQH = IBMModel3(bitext_qH_qH, 50) print("Model QH QH trained.. In", time.time() - start, " seconds..") with open('modelQHQH_Model3_' + qtype + '.pk', 'wb') as fout: pickle.dump(ibmQH, fout) print("Training Model3 QD QD..") start = time.time() ibmQD = IBMModel3(bitext_qD_qD, 50) print("Model QD QD trained.. In", time.time() - start, " seconds..") with open('modelQDQD_Model3_' + qtype + '.pk', 'wb') as fout: pickle.dump(ibmQD, fout) print("Training Model3 QHQD QHQD..") start = time.time() ibmQHQD = IBMModel3(bitext_qHqD_qHqD, 50) print("Model QH QH trained.. In", time.time() - start, " seconds..") with open('modelQHQD_Model3_' + qtype + '.pk', 'wb') as fout: pickle.dump(ibmQHQD, fout) print(round(ibmQH.translation_table['html']['web'], 10)) print(round(ibmQD.translation_table['html']['web'], 10)) print(round(ibmQHQD.translation_table['html']['web'], 10)) # Model 4 print("Training Model4 QH QH..") start = time.time() ibmQH = IBMModel4(bitext_qH_qH, 50) print("Model QH QH trained.. In", time.time() - start, " seconds..") with open('modelQHQH_Model4_' + qtype + '.pk', 'wb') as fout: pickle.dump(ibmQH, fout) print("Training Model4 QD QD..") start = time.time() ibmQD = IBMModel4(bitext_qD_qD, 50) print("Model QD QD trained.. In", time.time() - start, " seconds..") with open('modelQDQD_Model4_' + qtype + '.pk', 'wb') as fout: pickle.dump(ibmQD, fout) print("Training Model4 QHQD QHQD..") start = time.time() ibmQHQD = IBMModel4(bitext_qHqD_qHqD, 50) print("Model QH QH trained.. In", time.time() - start, " seconds..") with open('modelQHQD_Model4_' + qtype + '.pk', 'wb') as fout: pickle.dump(ibmQHQD, fout) print(round(ibmQH.translation_table['html']['web'], 10)) print(round(ibmQD.translation_table['html']['web'], 10)) print(round(ibmQHQD.translation_table['html']['web'], 10)) # Model5 print("Training Model5 QH QH..") start = time.time() ibmQH = IBMModel5(bitext_qH_qH, 50) print("Model QH QH trained.. In", time.time() - start, " seconds..") with open('modelQHQH_Model5_' + qtype + '.pk', 'wb') as fout: pickle.dump(ibmQH, fout) print("Training Model5 QD QD..") start = time.time() ibmQD = IBMModel5(bitext_qD_qD, 50) print("Model QD QD trained.. In", time.time() - start, " seconds..") with open('modelQDQD_Model5_' + qtype + '.pk', 'wb') as fout: pickle.dump(ibmQD, fout) print("Training Model5 QHQD QHQD..") start = time.time() ibmQHQD = IBMModel5(bitext_qHqD_qHqD, 50) print("Model QH QH trained.. In", time.time() - start, " seconds..") with open('modelQHQD_Model5_' + qtype + '.pk', 'wb') as fout: pickle.dump(ibmQHQD, fout) print(round(ibmQH.translation_table['html']['web'], 10)) print(round(ibmQD.translation_table['html']['web'], 10)) print(round(ibmQHQD.translation_table['html']['web'], 10))