from scipy.spatial.distance import squareform from scipy.stats import ttest_1samp import seaborn as sns import matplotlib.pyplot as plt from nltools.stats import (correlation_permutation, one_sample_permutation, two_sample_permutation, summarize_bootstrap, matrix_permutation) from nltools.stats import regress as regression from nltools.plotting import (plot_stacked_adjacency, plot_silhouette) from nltools.utils import (all_same, attempt_to_import, concatenate, _bootstrap_apply_func) from .design_matrix import Design_Matrix from joblib import Parallel, delayed # Optional dependencies nx = attempt_to_import('networkx', 'nx') MAX_INT = np.iinfo(np.int32).max class Adjacency(object): ''' Adjacency is a class to represent Adjacency matrices as a vector rather than a 2-dimensional matrix. This makes it easier to perform data manipulation and analyses. Args: data: pandas data instance or list of files matrix_type: (str) type of matrix. Possible values include: ['distance','similarity','directed','distance_flat', 'similarity_flat','directed_flat']
__author__ = ["Luke Chang"] __license__ = "MIT" import pandas as pd import seaborn as sns import matplotlib.pyplot as plt import numpy as np from nltools.stats import two_sample_permutation, one_sample_permutation from nilearn.plotting import plot_glass_brain, plot_stat_map, view_img, view_img_on_surf from nltools.prefs import MNI_Template, resolve_mni_path from nltools.utils import attempt_to_import import warnings # Optional dependencies ipywidgets = attempt_to_import('ipywidgets', name='ipywidgets', fromlist=['interact', 'fixed', 'widgets']) def plot_interactive_brain(brain, threshold=1e-6, surface=False, percentile_threshold=False, anatomical=None, **kwargs): """ This function leverages nilearn's new javascript based brain viewer functions to create interactive plotting functionality. Args: brain (nltools.Brain_Data): a Brain_Data instance of 1d or 2d shape (i.e. 3d or 4d volume) threshold (float/str): threshold to initialize the visualization, maybe be a percentile string; default 0
import matplotlib.pyplot as plt import numpy as np from numpy.fft import fft, fftfreq from nltools.stats import two_sample_permutation, one_sample_permutation from nilearn.plotting import plot_glass_brain, plot_stat_map, view_img, view_img_on_surf from nltools.prefs import MNI_Template, resolve_mni_path from nltools.utils import attempt_to_import import warnings import sklearn import os # Optional dependencies ipywidgets = attempt_to_import( "ipywidgets", name="ipywidgets", fromlist=[ "interact", "fixed", "widgets", "BoundedFloatText", "BoundedIntText" ], ) def plot_interactive_brain( brain, threshold=1e-6, surface=False, percentile_threshold=False, anatomical=None, **kwargs, ): """ This function leverages nilearn's new javascript based brain viewer functions to create interactive plotting functionality.
__license__ = "MIT" import pandas as pd import seaborn as sns import matplotlib.pyplot as plt import numpy as np from nltools.stats import two_sample_permutation, one_sample_permutation from nilearn.plotting import plot_glass_brain, plot_stat_map, view_img, view_img_on_surf from nltools.prefs import MNI_Template, resolve_mni_path from nltools.utils import attempt_to_import import warnings import os # Optional dependencies ipywidgets = attempt_to_import("ipywidgets", name="ipywidgets", fromlist=["interact", "fixed", "widgets"]) def plot_interactive_brain(brain, threshold=1e-6, surface=False, percentile_threshold=False, anatomical=None, **kwargs): """ This function leverages nilearn's new javascript based brain viewer functions to create interactive plotting functionality. Args: brain (nltools.Brain_Data): a Brain_Data instance of 1d or 2d shape (i.e. 3d or 4d volume) threshold (float/str): threshold to initialize the visualization, maybe be a percentile string; default 0