Пример #1
0
def test_transition_matrices():
    nspins = 11
    n = 2**nspins
    T_old = transition_matrix(n)
    T_dense = transition_matrix2(n)
    T_sparse = transition_matrix_sparse(n)
    assert np.array_equal(T_old.todense(), T_dense)
    assert np.array_equal(T_old.todense(), T_sparse.todense())
Пример #2
0
def test_dot_speed():
    # Test suggests .dot has a modest speed advantage.
    # 10000 runs: 276s/298s/252s spin-8 star/at/dot
    E, V = np.linalg.eigh(H8_MATRIX)
    Vcol = csc_matrix(V)
    Vrow = csr_matrix(Vcol.T)
    T = transition_matrix(2**8)
    intensity_matrices = [
        f(Vrow, T, Vcol, 1).todense() for f in [istar, iat, idot]
    ]
    for i in range(2):
        assert np.allclose(intensity_matrices[i], intensity_matrices[i + 1])
Пример #3
0
def simsignals(H, nspins):
    """
    Calculates the eigensolution of the spin Hamiltonian H and, using it,
    returns the allowed transitions as list of (frequency, intensity) tuples.

    Parameters
    ---------

    H : ndarray
        the spin Hamiltonian.
    nspins : int
        the number of nuclei in the spin system.

    Returns
    -------
    spectrum : [(float, float)...]
        a list of (frequency, intensity) tuples.
    """
    """The original simsignals."""
    # This routine was optimized for speed by vectorizing the intensity
    # calculations, replacing a nested-for signal-by-signal calculation.
    # Considering that hamiltonian was dramatically faster when refactored to
    # use arrays instead of sparse matrices, consider an array refactor to this
    # function as well.

    # The eigensolution calculation apparently must be done on a dense matrix,
    # because eig functions on sparse matrices can't return all answers?!
    # Using eigh so that answers have only real components and no residual small
    # unreal components b/c of rounding errors
    E, V = np.linalg.eigh(H)  # V will be eigenvectors, v will be frequencies

    # 2019-04-27: the statement below may be wrong. May be entirely real already
    # Eigh still leaves residual 0j terms, so:
    V = np.asmatrix(V.real)

    # Calculate signal intensities
    Vcol = csc_matrix(V)
    Vrow = csr_matrix(Vcol.T)
    m = 2**nspins
    T = transition_matrix(m)
    I = Vrow * T * Vcol
    I = np.square(I.todense())

    spectrum = []
    for i in range(m - 1):
        for j in range(i + 1, m):
            if I[i, j] > 0.01:  # consider making this minimum intensity
                # cutoff a function arg, for flexibility
                v = abs(E[i] - E[j])
                spectrum.append((v, I[i, j]))

    return spectrum
Пример #4
0
def test_matrix_multiplication():
    """A sanity test that all three versions of matrix multiplication are
    identical.
    """
    E, V = np.linalg.eigh(H_RIOUX)
    Vcol = csc_matrix(V)
    Vrow = csr_matrix(Vcol.T)
    T = transition_matrix(8)
    Istar = Vrow * T * Vcol
    Iat = Vrow @ T @ Vcol
    Idot = Vrow.dot(T.dot(Vcol))
    assert np.allclose(Istar.todense(), Iat.todense())
    assert np.allclose(Istar.todense(), Idot.todense())
Пример #5
0
def new_simsignals(H, nspins):
    """Taking lessons from test results to create a faster simsignals
    function.
    """
    m = 2**nspins
    E, V = np.linalg.eigh(H)
    T = transition_matrix(m)
    I = np.square(V.T.dot(T.dot(V)))
    spectrum = []
    for i in range(m - 1):
        for j in range(i + 1, m):
            if I[i, j] > 0.01:  # consider making this minimum intensity
                # cutoff a function arg, for flexibility
                v = abs(E[i] - E[j])
                spectrum.append((v, I[i, j]))
    return spectrum
Пример #6
0
def test_new_matrix_simsignals():
    # Testing with H11_MATRIX: dense is MUCH faster!
    # e.g. 13.8 vs. 13.6 vs. 0.28 s original/norow/dense
    # H11_NDARRAY 22.9 / 23.2 / 0.57 s
    n = 1
    nspins = 11
    E, V = np.linalg.eigh(H11_NDARRAY)
    T = transition_matrix(2**nspins)
    test_functions = [
        original_intensity_matrix, norow_intensity_matrix,
        dense_intensity_matrix
    ]
    intensity_matrices = []
    intensity_matrices.append((original_intensity_matrix(V, T, n).todense()))
    intensity_matrices.append((norow_intensity_matrix(V, T, n).todense()))
    intensity_matrices.append(dense_intensity_matrix(V, T, n))
    assert np.allclose(intensity_matrices[0], intensity_matrices[1])
    assert np.allclose(intensity_matrices[1], intensity_matrices[2])
Пример #7
0
def test_tm():
    t_old = transition_matrix(2**11)
    t_new = cache_tm(2**11)
    assert np.array_equal(t_old.todense(), t_new.todense())
Пример #8
0
def test_cache_tm():
    T1 = transition_matrix(2**3)
    T2 = cache_tm(2**3)
    assert np.array_equal(T1.todense(), T2.todense())