Пример #1
0
def psoft(cls_dets, thresh):
    cls_dets = soft_nms(cls_dets, method=2)
    indexes = np.where(cls_dets[:, -1] > thresh)[0]
    cls_dets = cls_dets[indexes]
    return cls_dets
Пример #2
0
def main():
  logger = create_logger(save_dir=cfg.log_dir)
  print = logger.info
  print(cfg)

  cfg.device = torch.device('cuda')
  torch.backends.cudnn.benchmark = False

  max_per_image = 100
  
  Dataset_eval = Damage_eval # your own data set

  # Crack RE Spalling
  dataset = Dataset_eval(cfg.data_dir, split='val', test_scales=cfg.test_scales, test_flip=cfg.test_flip) # split test
  
  data_loader = torch.utils.data.DataLoader(dataset, batch_size=1, shuffle=False,
                                            num_workers=1, pin_memory=True,
                                            collate_fn=dataset.collate_fn)
                                            
  print('Creating model...')
  if 'hourglass' in cfg.arch:
    model = get_hourglass[cfg.arch]
  elif 'resdcn' in cfg.arch:
    model = get_pose_net_resdcn(num_layers=18, head_conv=64, num_classes=3)
  elif cfg.arch == 'resnet':
    model = get_pose_net(num_layers=18, head_conv=64, num_classes=3) 
  elif cfg.arch == 'res_CBAM':
    model = get_pose_net_resnet_CBAM(num_layers=18, head_conv=64, num_classes=3)
  elif cfg.arch == 'resnet_PAM':
    model = get_pose_net_resnet_PAM(num_layers=18, head_conv=64, num_classes=3)
  elif cfg.arch == 'resnet_SE':
    model = get_pose_net_resnet_SE(num_layers=18, head_conv=64, num_classes=3)

  model = load_model(model, cfg.pretrain_dir)
  model = model.to(cfg.device)
  model.eval()

  results = {}
  with torch.no_grad():
    for inputs in tqdm(data_loader):
      img_id, inputs,img_path = inputs[0]
      print('id%s ',img_id)
      
      detections = []
      for scale in inputs:
        inputs[scale]['image'] = inputs[scale]['image'].to(cfg.device)

        output = model(inputs[scale]['image'])[-1]
        dets = ctdet_decode(*output, K=cfg.test_topk) 
        dets = dets.detach().cpu().numpy().reshape(1, -1, dets.shape[2])[0]

        top_preds = {}
        dets[:, :2] = transform_preds(dets[:, 0:2],  
                                      inputs[scale]['center'],
                                      inputs[scale]['scale'],
                                      (inputs[scale]['fmap_w'], inputs[scale]['fmap_h']))
        dets[:, 2:4] = transform_preds(dets[:, 2:4],
                                       inputs[scale]['center'],
                                       inputs[scale]['scale'],
                                       (inputs[scale]['fmap_w'], inputs[scale]['fmap_h']))
        cls = dets[:, -1]
        for j in range(dataset.num_classes):
          inds = (cls == j)
          top_preds[j + 1] = dets[inds, :5].astype(np.float32) 
          top_preds[j + 1][:, :4] /= scale
        
        detections.append(top_preds)

      bbox_and_scores = {}
      for j in range(1, dataset.num_classes + 1):
        bbox_and_scores[j] = np.concatenate([d[j] for d in detections], axis=0)
        if len(dataset.test_scales) > 1:
          soft_nms(bbox_and_scores[j], Nt=0.5, method=2)
      scores = np.hstack([bbox_and_scores[j][:, 4] for j in range(1, dataset.num_classes + 1)])

      if len(scores) > max_per_image: 
        kth = len(scores) - max_per_image
        thresh = np.partition(scores, kth)[kth]
        for j in range(1, dataset.num_classes + 1):
          keep_inds = (bbox_and_scores[j][:, 4] >= thresh)
          bbox_and_scores[j] = bbox_and_scores[j][keep_inds] 

      images_test = cv2.imread(img_path)
      fig = plt.figure(0) 
      colors = COCO_COLORS
      names = COCO_NAMES
      #cv2.imwrite('E:/test1.png',images_test)
      
      plt.imshow(cv2.cvtColor(images_test, cv2.COLOR_BGR2RGB))
      for lab in bbox_and_scores: 
        for boxes in bbox_and_scores[lab]: 
          x1, y1, x2, y2, score = boxes
          if (x1 < 0):
            x1 = 0
          if (y1 < 0):
            y1 = 0
          if (x2 > 511):
            x2 = 511
          if (y2 > 511):
            y2 = 511
          
          if score > 0.2:
            plt.gca().add_patch(Rectangle((x1, y1), x2 - x1, y2 - y1, linewidth=2, edgecolor=colors[lab], facecolor='none'))
            plt.text(x1 -12 , y1 - 12 , names[lab], bbox=dict(facecolor=colors[lab], alpha=0.5), fontsize=7, color='k')
      
      fig.patch.set_visible(False)
      Save_dir = 'data/damage/Predict_images' # save images
      Image_name = img_path[-10:] 
      Save_dir = os.path.join(Save_dir, Image_name)
      plt.axis('off')
      plt.savefig(Save_dir, dpi=400, transparent=True, bbox_inches="tight", pad_inches=0.1) # 保存
      plt.close(0) 

      results[img_id] = bbox_and_scores 

  eval_results = dataset.run_eval(results, cfg.ckpt_dir)
  print(eval_results)
Пример #3
0
def pred_eval(predictor, test_data, imdb, cfg, vis = False, thresh = 1e-3, logger = None, ignore_cache = True):
    det_file = os.path.join(imdb.result_path, imdb.name + '_detections.pkl')

    if os.path.exists(det_file) and not ignore_cache:
        with open(det_file, 'rb') as fid:
            all_boxes = pickle.load(fid)
        info_str = imdb.evaluate_detections(all_boxes)
        if logger:
            logger.info('evaluate detections: \n{}'.format(info_str))

        return 
    assert vis or not test_data.shuffle
    data_names = [k[0] for k in test_data.provide_data]

    #if not isinstance(test_data,mx.io.PrefetchingIter):
    #    test_data = mx.io.PrefetchingIter(test_data)

    max_per_image = cfg.TEST.max_per_image

    num_images = imdb.num_images

    for test_scale_index, test_scale in enumerate(cfg.TEST_SCALES):
        det_file_single_scale = os.path.join(imdb.result_path, imdb.name + "_detections_" + str(test_scale_index) + '.pkl')
        cfg.SCALES = [test_scale]
        test_data.reset()

        all_boxes_single_scale = [[[] for _ in range(num_images)]
                                  for _ in range(imdb.num_classes)]

        detect_at_single_scale(predictor, data_names, imdb, test_data, cfg, thresh, vis, all_boxes_single_scale, logger)

        with open(det_file_single_scale,'wb') as f:
            pickle.dump(all_boxes_single_scale, f, protocol = pickle.HIGHEST_PROTOCOL)

    all_boxes = [[[] for _ in range(num_images)] for _ in range(imdb.num_classes)]

    for test_scale_index, test_scale in enumerate(cfg.TEST_SCALES):
        det_file_single_scale = os.path.join(imdb.result_path, imdb.name + '_detections_' + str(test_scale_index) + '.pkl')
        if os.path.exists(det_file_single_scale):
            with open(det_file_single_scale, 'rb') as fid:
                all_boxes_single_scale = pickle.load(fid)
            for idx_class in range(1, imdb.num_classes):
                for idx_im in range(0,num_images):
                    if len(all_boxes[idx_class][idx_im]) == 0:
                        all_boxes[idx_class][idx_im] = all_boxes_single_scale[idx_class][idx_im]

                    else:
                        all_boxes[idx_class][idx_im] = np.vstack((all_boxes[idx_class][idx_im], all_boxes_single_scale[idx_class][idx_im]))

    for idx_class in range(1, imdb.num_classes):
        for idx_im in range(0, num_images):
#            keep = py_nms(all_boxes[idx_class][idx_im],cfg.TEST.NMS)
            keep = soft_nms(all_boxes[idx_class][idx_im],cfg.TEST.NMS)
            all_boxes[idx_class][idx_im] = all_boxes[idx_class][idx_im][keep, :]

    if max_per_image > 0:
        for idx_im in range(0,num_images):
            image_scores = np.hstack([all_boxes[j][idx_im][:,-1]
                                      for j in range(1, imdb.num_classes)])
            if len(image_scores) > max_per_image:
                image_thresh = np.sort(image_scores)[-max_per_image]
                for j in range(1, imdb.num_classes):
                    keep = np.where(all_boxes[j][idx_im][:,-1] >= image_thresh)[0]
                    all_boxes[j][idx_im] = all_boxes[j][idx_im][keep,:]
        

    if vis:
        test_data.reset()
        for i in range(num_images):
            im_info, data = test_data.next()
            img = data.data[0].asnumpy().transpose((0,2,3,1))[0]
            img = (img * np.array([[[0.229, 0.224, 0.225]]]) +np.array([[[0.485, 0.456, 0.406]]])) * 255
            img = np.clip(img,0,255)
            img = img.astype(np.uint8)
            print(type(img))
            image = cv2.cvtColor(img,cv2.COLOR_BGR2RGB)

            scale = im_info[0,2]
            for j in range(1,imdb.num_classes):
                for box in all_boxes[j][i]:
                    if box[-1] < 0.3: continue
                    box[:4] = (box[:4] * scale)
                    box = box.astype(np.int64)
                    print(box)
                    cv2.rectangle(image,tuple(box[:2]),tuple(box[2:4]),(255,0,0),1)
                    cv2.putText(image,names[j], tuple(box[:2]),cv2.FONT_HERSHEY_COMPLEX,1,(0,0,255),1)
            cv2.imwrite("./det_images/det_img_{}.jpg".format(i),image)
            print("detected image saved in ./det_images/det_img_{}.jpg".format(i))
            import pdb
            pdb.set_trace()

    with open(det_file, 'wb') as f:
        pickle.dump(all_boxes, f, protocol = pickle.HIGHEST_PROTOCOL)

    info_str = imdb.evaluate_detections(all_boxes)
    if logger:
        logger.info("evaluate detections: \n{}".format(info_str))
Пример #4
0
def psoft(cls_dets):
    keep = soft_nms(cls_dets, method=2)
    return cls_dets[keep]
Пример #5
0
def main():
    cfg.device = torch.device('cuda')
    torch.backends.cudnn.benchmark = False

    max_per_image = 100

    image = cv2.imread(cfg.img_dir)
    # orig_image = image
    height, width = image.shape[0:2]
    padding = 127 if 'hourglass' in cfg.arch else 31
    imgs = {}
    for scale in cfg.test_scales:
        new_height = int(height * scale)
        new_width = int(width * scale)

        if cfg.img_size > 0:
            img_height, img_width = cfg.img_size, cfg.img_size
            center = np.array([new_width / 2., new_height / 2.],
                              dtype=np.float32)
            scaled_size = max(height, width) * 1.0
            scaled_size = np.array([scaled_size, scaled_size],
                                   dtype=np.float32)
        else:
            img_height = (new_height | padding) + 1
            img_width = (new_width | padding) + 1
            center = np.array([new_width // 2, new_height // 2],
                              dtype=np.float32)
            scaled_size = np.array([img_width, img_height], dtype=np.float32)

        img = cv2.resize(image, (new_width, new_height))
        trans_img = get_affine_transform(center, scaled_size, 0,
                                         [img_width, img_height])
        img = cv2.warpAffine(img, trans_img, (img_width, img_height))

        img = img.astype(np.float32) / 255.
        img -= np.array(COCO_MEAN if cfg.dataset == 'coco' else VOC_MEAN,
                        dtype=np.float32)[None, None, :]
        img /= np.array(COCO_STD if cfg.dataset == 'coco' else VOC_STD,
                        dtype=np.float32)[None, None, :]
        img = img.transpose(2, 0,
                            1)[None, :, :, :]  # from [H, W, C] to [1, C, H, W]

        if cfg.test_flip:
            img = np.concatenate((img, img[:, :, :, ::-1].copy()), axis=0)

        imgs[scale] = {
            'image': torch.from_numpy(img).float(),
            'center': np.array(center),
            'scale': np.array(scaled_size),
            'fmap_h': np.array(img_height // 4),
            'fmap_w': np.array(img_width // 4)
        }

    print('Creating model...')
    if 'hourglass' in cfg.arch:
        model = get_hourglass[cfg.arch]
    elif 'resdcn' in cfg.arch:
        model = get_pose_net(num_layers=int(cfg.arch.split('_')[-1]),
                             num_classes=80 if cfg.dataset == 'coco' else 20)
    else:
        raise NotImplementedError

    model = load_model(model, cfg.ckpt_dir)
    model = model.to(cfg.device)
    model.eval()

    with torch.no_grad():
        detections = []
        for scale in imgs:
            imgs[scale]['image'] = imgs[scale]['image'].to(cfg.device)

            output = model(imgs[scale]['image'])[-1]
            dets = ctdet_decode(*output, K=cfg.test_topk)
            dets = dets.detach().cpu().numpy().reshape(1, -1, dets.shape[2])[0]

            top_preds = {}
            dets[:, :2] = transform_preds(
                dets[:, 0:2], imgs[scale]['center'], imgs[scale]['scale'],
                (imgs[scale]['fmap_w'], imgs[scale]['fmap_h']))
            dets[:, 2:4] = transform_preds(
                dets[:, 2:4], imgs[scale]['center'], imgs[scale]['scale'],
                (imgs[scale]['fmap_w'], imgs[scale]['fmap_h']))
            cls = dets[:, -1]
            for j in range(80):
                inds = (cls == j)
                top_preds[j + 1] = dets[inds, :5].astype(np.float32)
                top_preds[j + 1][:, :4] /= scale

            detections.append(top_preds)

        bbox_and_scores = {}
        for j in range(1, 81 if cfg.dataset == 'coco' else 21):
            bbox_and_scores[j] = np.concatenate([d[j] for d in detections],
                                                axis=0)
            if len(cfg.test_scales) > 1:
                soft_nms(bbox_and_scores[j], Nt=0.5, method=2)
        scores = np.hstack([
            bbox_and_scores[j][:, 4]
            for j in range(1, 81 if cfg.dataset == 'coco' else 21)
        ])

        if len(scores) > max_per_image:
            kth = len(scores) - max_per_image
            thresh = np.partition(scores, kth)[kth]
            for j in range(1, 81 if cfg.dataset == 'coco' else 21):
                keep_inds = (bbox_and_scores[j][:, 4] >= thresh)
                bbox_and_scores[j] = bbox_and_scores[j][keep_inds]

        # plt.imshow(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
        # plt.show()
        fig = plt.figure(0)
        colors = COCO_COLORS if cfg.dataset == 'coco' else VOC_COLORS
        names = COCO_NAMES if cfg.dataset == 'coco' else VOC_NAMES
        plt.imshow(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
        for lab in bbox_and_scores:
            for boxes in bbox_and_scores[lab]:
                x1, y1, x2, y2, score = boxes
                if score > 0.3:
                    plt.gca().add_patch(
                        Rectangle((x1, y1),
                                  x2 - x1,
                                  y2 - y1,
                                  linewidth=2,
                                  edgecolor=colors[lab],
                                  facecolor='none'))
                    plt.text(x1 + 3,
                             y1 + 3,
                             names[lab] + '%.2f' % score,
                             bbox=dict(facecolor=colors[lab], alpha=0.5),
                             fontsize=7,
                             color='k')

        fig.patch.set_visible(False)
        plt.axis('off')
        plt.savefig('data/demo_results.png', dpi=300, transparent=True)
        plt.show()
Пример #6
0
def psoft(cls_dets):
    cls_dets = soft_nms(cls_dets, method=1)
    return cls_dets
def main():
    logger = create_logger(save_dir=cfg.log_dir)
    print = logger.info
    print(cfg)

    cfg.device = torch.device('cuda')
    torch.backends.cudnn.benchmark = False

    max_per_image = 100

    Dataset_eval = COCO_eval if cfg.dataset == 'coco' else PascalVOC_eval
    dataset = Dataset_eval(cfg.data_dir,
                           split='val',
                           img_size=cfg.img_size,
                           test_scales=cfg.test_scales,
                           test_flip=cfg.test_flip)
    data_loader = torch.utils.data.DataLoader(dataset,
                                              batch_size=1,
                                              shuffle=False,
                                              num_workers=1,
                                              pin_memory=False,
                                              collate_fn=dataset.collate_fn)

    print('Creating model...')
    if 'hourglass' in cfg.arch:
        model = get_hourglass[cfg.arch]
    elif 'resdcn' in cfg.arch:
        model = get_pose_net(num_layers=int(cfg.arch.split('_')[-1]),
                             num_classes=dataset.num_classes)
    else:
        raise NotImplementedError

    model = load_model(model, cfg.pretrain_dir)
    model = model.to(cfg.device)
    model.eval()

    results = {}
    with torch.no_grad():
        for inputs in data_loader:
            img_id, inputs = inputs[0]

            detections = []
            for scale in inputs:
                inputs[scale]['image'] = inputs[scale]['image'].to(cfg.device)

                output = model(inputs[scale]['image'])[-1]
                dets = ctdet_decode(*output, K=cfg.test_topk)
                dets = dets.detach().cpu().numpy().reshape(
                    1, -1, dets.shape[2])[0]

                top_preds = {}
                dets[:, :2] = transform_preds(
                    dets[:,
                         0:2], inputs[scale]['center'], inputs[scale]['scale'],
                    (inputs[scale]['fmap_w'], inputs[scale]['fmap_h']))
                dets[:, 2:4] = transform_preds(
                    dets[:,
                         2:4], inputs[scale]['center'], inputs[scale]['scale'],
                    (inputs[scale]['fmap_w'], inputs[scale]['fmap_h']))
                cls = dets[:, -1]
                for j in range(dataset.num_classes):
                    inds = (cls == j)
                    top_preds[j + 1] = dets[inds, :5].astype(np.float32)
                    top_preds[j + 1][:, :4] /= scale

                detections.append(top_preds)

            bbox_and_scores = {}
            for j in range(1, dataset.num_classes + 1):
                bbox_and_scores[j] = np.concatenate([d[j] for d in detections],
                                                    axis=0)
                if len(dataset.test_scales) > 1:
                    soft_nms(bbox_and_scores[j], Nt=0.5, method=2)
            scores = np.hstack([
                bbox_and_scores[j][:, 4]
                for j in range(1, dataset.num_classes + 1)
            ])

            if len(scores) > max_per_image:
                kth = len(scores) - max_per_image
                thresh = np.partition(scores, kth)[kth]
                for j in range(1, dataset.num_classes + 1):
                    keep_inds = (bbox_and_scores[j][:, 4] >= thresh)
                    bbox_and_scores[j] = bbox_and_scores[j][keep_inds]

            results[img_id] = bbox_and_scores

    eval_results = dataset.run_eval(results, cfg.ckpt_dir)
    print(eval_results)