Пример #1
0
            cav.heatmap(np.array(labels * 255 / np.max(labels),
                                 dtype=np.uint8)))
        print(np.sum(tcl_mask[:, :, 1]))

        t0 = time.time()
        for bbox_idx in range(1, ret):
            bbox_mask = labels == bbox_idx
            text_map = tcl_mask[:, :, 0] * bbox_mask

            boxes = bbox_transfor_inv(radius_map,
                                      sin_map,
                                      cos_map,
                                      text_map,
                                      wclip=(2, 8))
            # nms
            boxes = lanms.merge_quadrangle_n9(boxes.astype('float32'), 0.25)
            boxes = boxes[:, :8].reshape((-1, 4, 2)).astype(np.int32)
            if boxes.shape[0] > 1:
                center = np.mean(boxes, axis=1).astype(np.int32).tolist()
                paths, routes_path = minConnectPath(center)
                boxes = boxes[routes_path]
                top = np.mean(boxes[:, 0:2, :],
                              axis=1).astype(np.int32).tolist()
                bot = np.mean(boxes[:, 2:4, :],
                              axis=1).astype(np.int32).tolist()

                boundary_point = top + bot[::-1]
                # for index in routes:

                for ip, pp in enumerate(top):
                    if ip == 0:
Пример #2
0
    def __call__(self, tcl_mask, radius_map, sin_map, cos_map):

        imgsize = cos_map.shape
        # ## 1. Reverse generation of box
        proposals = bbox_transfor_inv(radius_map,
                                      sin_map,
                                      cos_map,
                                      tcl_mask[:, :, 1],
                                      wclip=self.clip)

        # ## 2. remove predicted boxes with either height or width < threshold
        proposals = filter_bbox(proposals, minsize=16)

        # ## 3. local nms
        proposals = lanms.merge_quadrangle_n9(proposals.astype('float32'),
                                              self.nms_threshold)

        # ## 4. clip bbox
        if proposals.shape[0] > 0:
            proposals = clip_box(proposals, imgsize)

        if proposals.shape[0] > 0:
            # ## 5. generate cluster label
            _, label_mask = cv2.connectedComponents(tcl_mask[:, :, 0].astype(
                np.uint8),
                                                    connectivity=8)
            cxy = np.mean(proposals[:, :8].reshape((-1, 4, 2)),
                          axis=1).astype(np.int32)

            # ## 6. Geometric features
            x_map = cxy[:, 0]
            y_map = cxy[:, 1]
            gh = (radius_map[:, :, 0] + radius_map[:, :, 1])
            h_map = gh[cxy[:, 1], cxy[:, 0]]
            w_map = np.clip(h_map // 4, self.clip[0], self.clip[1]) * 2
            c_map = cos_map[cxy[:, 1], cxy[:, 0]]
            s_map = sin_map[cxy[:, 1], cxy[:, 0]]
            label_map = label_mask[cxy[:, 1], cxy[:, 0]]
            geo_map = np.stack(
                [x_map, y_map, h_map, w_map, c_map, s_map, label_map], axis=1)
        else:
            geo_map = None

        # ## 7. add bbox, sure proposals >self.k_at_hop[0]
        gps = self.add_proposal(proposals.shape[0], 1 - tcl_mask[:, :, 0])
        if gps is not None:
            if geo_map is not None:
                geo_map = np.concatenate([geo_map, gps], axis=0)
            else:
                geo_map = gps

        # ## 8. adding Random Disturbance
        geo_map = jitter_gt_map(geo_map, jitter=0.20)

        # ## 9. [roi_num, (xc ,yc ,h, w, cos, sin, class), img_size]-->Bx9
        roi_num = np.ones(
            (geo_map.shape[0], 1), dtype=np.float16) * geo_map.shape[0]
        img_size = np.ones(
            (geo_map.shape[0], 1), dtype=np.float16) * imgsize[0]
        gt_roi = np.hstack([roi_num, geo_map, img_size])

        return gt_roi
Пример #3
0
    def proposals_layer(self, tr_map, tcl_map, radii_map, sin_map, cos_map):

        tr_pred_mask = tr_map > self.tr_thresh
        tcl_pred_mask = tcl_map > self.tcl_thresh

        # multiply TR and TCL
        tcl_mask = tcl_pred_mask * tr_pred_mask

        # regularize
        sin_map, cos_map = regularize_sin_cos(sin_map, cos_map)

        # find disjoint regions
        tcl_mask = fill_hole(tcl_mask)
        tcl_contours, _ = cv2.findContours(tcl_mask.astype(np.uint8),
                                           cv2.RETR_TREE,
                                           cv2.CHAIN_APPROX_SIMPLE)

        mask = np.zeros_like(tcl_mask)
        proposals = None
        for cont in tcl_contours:
            deal_map = mask.copy()
            cv2.drawContours(deal_map, [cont], -1, 1, -1)
            if deal_map.sum() <= 100:
                continue
            text_map = tr_map * deal_map
            # ## 1. Reverse generation of box
            bboxs = bbox_transfor_inv(radii_map,
                                      sin_map,
                                      cos_map,
                                      text_map,
                                      wclip=self.clip,
                                      expend=self.expend)

            # ## 3. local nms
            bboxs = lanms.merge_quadrangle_n9(bboxs.astype('float32'), 0.25)

            reconstruct_mask = mask.copy()
            boxes = bboxs[:, :8].reshape((-1, 4, 2)).astype(np.int32)

            cv2.drawContours(reconstruct_mask, boxes, -1, 1, -1)
            if (reconstruct_mask *
                    tr_pred_mask).sum() < reconstruct_mask.sum() * 0.5:
                continue

            if proposals is None:
                proposals = bboxs
            else:
                proposals = np.concatenate([proposals, bboxs], axis=0)

        if proposals is None or proposals.shape[0] <= 0:
            return None, None

        # ## 5. generate cluster label
        cxy = np.mean(proposals[:, :8].reshape((-1, 4, 2)),
                      axis=1).astype(np.int32)

        # ## 6. Geometric features
        gh = (radii_map[:, :, 0] + radii_map[:, :, 1])
        h_map = gh[cxy[:, 1], cxy[:, 0]]
        w_map = np.clip(h_map // 2, 2 * self.clip[0], 2 * self.clip[1])
        c_map = cos_map[cxy[:, 1], cxy[:, 0]]
        s_map = sin_map[cxy[:, 1], cxy[:, 0]]
        geo_map = np.stack([cxy[:, 0], cxy[:, 1], h_map, w_map, c_map, s_map],
                           axis=1)

        return geo_map, proposals
Пример #4
0
    def detect_contours(self, tr_pred, tcl_pred, sin_pred, cos_pred, radii_pred):

        # thresholding
        tr_pred_mask = tr_pred > self.tr_thresh
        tcl_pred_mask = tcl_pred > self.tcl_thresh

        # multiply TR and TCL
        tcl_mask = tcl_pred_mask * tr_pred_mask

        # regularize
        sin_pred, cos_pred = regularize_sin_cos(sin_pred, cos_pred)

        # find disjoint regions
        tcl_mask = fill_hole(tcl_mask)
        tcl_contours, _ = cv2.findContours(tcl_mask.astype(np.uint8), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)

        mask = np.zeros_like(tcl_mask)
        bbox_contours = list()
        for cont in tcl_contours:
            deal_map = mask.copy()
            cv2.drawContours(deal_map, [cont], -1, 1, -1)
            if deal_map.sum() <= 100:
                continue
            text_map = tr_pred * deal_map
            bboxs = self.bbox_transfor_inv(radii_pred, sin_pred, cos_pred, text_map, wclip=(4, 12))
            # nms
            boxes = lanms.merge_quadrangle_n9(bboxs.astype('float32'), 0.25)
            boxes = boxes[:, :8].reshape((-1, 4, 2)).astype(np.int32)
            boundary_point = None
            if boxes.shape[0] > 1:
                center = np.mean(boxes, axis=1).astype(np.int32).tolist()
                paths, routes_path = minConnectPath(center)
                boxes = boxes[routes_path]
                top = np.mean(boxes[:, 0:2, :], axis=1).astype(np.int32).tolist()
                bot = np.mean(boxes[:, 2:4, :], axis=1).astype(np.int32).tolist()
                edge0 = self.select_edge(top + bot[::-1], boxes[0])
                edge1 = self.select_edge(top + bot[::-1], boxes[-1])
                if edge0 is not None:
                    top.insert(0, edge0[0])
                    bot.insert(0, edge0[1])
                if edge1 is not None:
                    top.append(edge1[0])
                    bot.append(edge1[1])
                boundary_point = np.array(top + bot[::-1])

            elif boxes.shape[0] == 1:
                top = boxes[0, 0:2, :].astype(np.int32).tolist()
                bot = boxes[0, 2:4:-1, :].astype(np.int32).tolist()
                boundary_point = np.array(top + bot)

            if boundary_point is None:
                continue
            reconstruct_mask = mask.copy()
            cv2.drawContours(reconstruct_mask, [boundary_point], -1, 1, -1)
            if (reconstruct_mask * tr_pred_mask).sum() < reconstruct_mask.sum() * 0.5:
                continue
            # if reconstruct_mask.sum() < 200:
            #     continue

            rect = cv2.minAreaRect(boundary_point)
            if min(rect[1][0], rect[1][1]) < 10 or rect[1][0] * rect[1][1] < 300:
                continue

            bbox_contours.append([boundary_point, np.array(np.stack([top, bot], axis=1))])

        return bbox_contours