def translate(self): device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') model = Model(self.config).to(device) self.logger.info('Restore model from {}'.format(self.model_file)) model.load_state_dict(torch.load(self.model_file)) model.eval() best_trans_file = self.input_file + '.best_trans' beam_trans_file = self.input_file + '.beam_trans' open(best_trans_file, 'w').close() open(beam_trans_file, 'w').close() num_sents = 0 with open(self.input_file, 'r') as f: for line in f: if line.strip(): num_sents += 1 all_best_trans = [''] * num_sents all_beam_trans = [''] * num_sents with torch.no_grad(): self.logger.info('Start translating {}'.format(self.input_file)) start = time.time() count = 0 for (src_toks, original_idxs) in self.data_manager.get_trans_input( self.input_file): src_toks_cuda = src_toks.to(device) rets = model.beam_decode(src_toks_cuda) for i, ret in enumerate(rets): probs = ret['probs'].cpu().detach().numpy().reshape([-1]) scores = ret['scores'].cpu().detach().numpy().reshape([-1]) symbols = ret['symbols'].cpu().detach().numpy() best_trans, best_trans_ids, beam_trans = self.get_trans( probs, scores, symbols) all_best_trans[original_idxs[i]] = best_trans + '\n' all_beam_trans[original_idxs[i]] = beam_trans + '\n\n' count += 1 if count % 100 == 0: self.logger.info( ' Translating line {}, average {} seconds/sent'. format(count, (time.time() - start) / count)) model.train() with open(best_trans_file, 'w') as ftrans, open(beam_trans_file, 'w') as btrans: ftrans.write(''.join(all_best_trans)) btrans.write(''.join(all_beam_trans)) self.logger.info('Done translating {}, it takes {} minutes'.format( self.input_file, float(time.time() - start) / 60.0))
def validate_on_data(model: Model, data: Dataset, batch_size: int, use_cuda: bool, max_output_length: int, level: str, eval_metric: Optional[str], loss_function: torch.nn.Module = None, beam_size: int = 0, beam_alpha: int = -1, batch_type: str = "sentence" ) \ -> (float, float, float, List[str], List[List[str]], List[str], List[str], List[List[str]], List[np.array]): """ Generate translations for the given data. If `loss_function` is not None and references are given, also compute the loss. :param model: model module :param data: dataset for validation :param batch_size: validation batch size :param use_cuda: if True, use CUDA :param max_output_length: maximum length for generated hypotheses :param level: segmentation level, one of "char", "bpe", "word" :param eval_metric: evaluation metric, e.g. "bleu" :param loss_function: loss function that computes a scalar loss for given inputs and targets :param beam_size: beam size for validation. If 0 then greedy decoding (default). :param beam_alpha: beam search alpha for length penalty, disabled if set to -1 (default). :param batch_type: validation batch type (sentence or token) :return: - current_valid_score: current validation score [eval_metric], - valid_loss: validation loss, - valid_ppl:, validation perplexity, - valid_sources: validation sources, - valid_sources_raw: raw validation sources (before post-processing), - valid_references: validation references, - valid_hypotheses: validation_hypotheses, - decoded_valid: raw validation hypotheses (before post-processing), - valid_attention_scores: attention scores for validation hypotheses """ valid_iter = make_data_iter(dataset=data, batch_size=batch_size, batch_type=batch_type, shuffle=False, train=False) valid_sources_raw = [s for s in data.src] pad_index = model.src_vocab.stoi[PAD_TOKEN] # disable dropout model.eval() # don't track gradients during validation with torch.no_grad(): all_outputs = [] valid_attention_scores = [] total_loss = 0 total_ntokens = 0 total_nseqs = 0 for valid_batch in iter(valid_iter): # run as during training to get validation loss (e.g. xent) batch = Batch(valid_batch, pad_index, use_cuda=use_cuda) # sort batch now by src length and keep track of order sort_reverse_index = batch.sort_by_src_lengths() # run as during training with teacher forcing if loss_function is not None and batch.trg is not None: batch_loss = model.get_loss_for_batch( batch, loss_function=loss_function) total_loss += batch_loss total_ntokens += batch.ntokens total_nseqs += batch.nseqs # run as during inference to produce translations output, attention_scores = model.run_batch( batch=batch, beam_size=beam_size, beam_alpha=beam_alpha, max_output_length=max_output_length) # sort outputs back to original order all_outputs.extend(output[sort_reverse_index]) valid_attention_scores.extend( attention_scores[sort_reverse_index] if attention_scores is not None else []) assert len(all_outputs) == len(data) if loss_function is not None and total_ntokens > 0: # total validation loss valid_loss = total_loss # exponent of token-level negative log prob valid_ppl = torch.exp(total_loss / total_ntokens) else: valid_loss = -1 valid_ppl = -1 # decode back to symbols decoded_valid = model.trg_vocab.arrays_to_sentences(arrays=all_outputs, cut_at_eos=True) # evaluate with metric on full dataset join_char = " " if level in ["word", "bpe"] else "" valid_sources = [join_char.join(s) for s in data.src] valid_references = [join_char.join(t) for t in data.trg] valid_hypotheses = [join_char.join(t) for t in decoded_valid] # post-process if level == "bpe": valid_sources = [bpe_postprocess(s) for s in valid_sources] valid_references = [bpe_postprocess(v) for v in valid_references] valid_hypotheses = [bpe_postprocess(v) for v in valid_hypotheses] # if references are given, evaluate against them if valid_references: assert len(valid_hypotheses) == len(valid_references) current_valid_score = 0 if eval_metric.lower() == 'bleu': # this version does not use any tokenization current_valid_score = bleu(valid_hypotheses, valid_references) elif eval_metric.lower() == 'chrf': current_valid_score = chrf(valid_hypotheses, valid_references) elif eval_metric.lower() == 'token_accuracy': current_valid_score = token_accuracy(valid_hypotheses, valid_references, level=level) elif eval_metric.lower() == 'sequence_accuracy': current_valid_score = sequence_accuracy( valid_hypotheses, valid_references) else: current_valid_score = -1 return current_valid_score, valid_loss, valid_ppl, valid_sources, \ valid_sources_raw, valid_references, valid_hypotheses, \ decoded_valid, valid_attention_scores