Пример #1
0
    def test_monk1(self):
        nn = NN(seed=4,
                epochs_limit=400,
                learning_algorithm=batch,
                error_calculator=ErrorCalculator.MSE,
                architecture=MultilayerPerceptron(
                    4,
                    activation=sigmoid,
                    activation_hidden=relu,
                    eta=0.5,
                    alambd=0,
                    alpha=0.8,
                ))

        train_data, test_data = read_monk(1)

        nn.fit(train_data)
        train_errs = nn.compute_learning_curve(train_data, ErrorCalculator.MIS)

        test_errs = nn.compute_learning_curve(test_data, ErrorCalculator.MIS)

        error_train = 0
        for x, d in train_data:
            error_train += (round(nn(x)[0][-1]) - d[0])**2

        error_test = 0
        for x, d in test_data:
            error_test += (round(nn(x)[0][-1]) - d[0])**2

        print(
            'train:',
            str(((len(train_data) - error_train) / len(train_data)) * 100) +
            '%')
        print(
            'test: ',
            str(((len(test_data) - error_test) / len(test_data)) * 100) + '%')

        self.assertEqual(error_train, 0)
        self.assertEqual(error_test, 0)

        nn.error_calculator = ErrorCalculator.MIS
        self.assertEqual(nn.compute_error(train_data), 0)
        self.assertEqual(nn.compute_error(test_data), 0)
Пример #2
0
from typing import Mapping, Sequence, Any, Dict

from nn import ErrorCalculator
from nn import sigmoid, batch
from nn.utilities import read_monk
from nn.activation_functions import relu, tanh, tanh_classification
from nn.validation import grid_search, write_on_file
import multiprocessing as mp

train_data, test_data = read_monk(1)

params_nn: Dict[str, Sequence[Any]] = dict(
    error_calculator=[ErrorCalculator.MSE],
    learning_algorithm=[batch],
    epochs_limit=[1000],
    n_init=[10],
    epsilon=[1e-05],
    patience=[10],
)

params_architecture: Mapping[str, Sequence[Any]] = dict(
    size_hidden_layers=[(2, )],
    activation=[tanh_classification],
    activation_hidden=[relu],
    eta=[0.1, 0.01, 0.001],
    alpha=[0, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9],
    alambd=[0, 0.0001, 0.001, 0.01],
    eta_decay=[0],
)

cv_params: Mapping[str, Any] = dict(