Пример #1
0
def main():

    #trivial test

    X = np.random.randn(100, 5)
    A = np.random.randn(10, 5)
    bias = np.random.randn(10)

    Y = np.dot(A, X.T).T + bias
    print(np.dot(A, X.T).T.shape)

    model = nn.Sequential()
    model.add(nn.Linear(5, 10))
    model.add(nn.Tanh(10))
    model.add(nn.Linear(10, 10))
    model.add(nn.MSE(10))

    print("Batch mode")
    for i in xrange(10000):
        print("Loss", model.forward(X, Y))
        model.backward(alpha=0.1)

    print("Single mode")
    for i in xrange(10000):
        for j in xrange(X.shape[0]):
            print("Loss", model.forward(X[j], Y[j]))
            model.backward(alpha=0.1)
Пример #2
0
def main():
    np.random.seed(1)

    model = nn.Sequential()
    model.add(nn.Linear(2, 5))
    model.add(nn.Sigmoid())
    model.add(nn.Linear(5, 1))
    #model.add(nn.Sigmoid())
    model.set_metric(nn.MSE())

    x = np.array([[0, 0], [0, 1], [1, 0], [1, 1]])
    y = np.array([[0], [1], [1], [0]])

    model.fit(x, y, 5000, 1)
Пример #3
0
import nn

network = nn.Container()
network.add(nn.Reshape((1, 784)))
network.add(nn.Linear(784, 100))
network.add(nn.Sigmoid())
network.add(nn.Linear(100, 10))
network.add(nn.Sigmoid())
network.add(nn.MSE(), cost=True)
network.make()
Пример #4
0
    args = parse()

    if args.dataset == 'linear':
        X_train, Y_train = generate_linear(n=100)
        X_test, Y_test = generate_linear(n=100)
    elif args.dataset == 'xor':
        X_train, Y_train = generate_XOR_easy()
        X_test, Y_test = generate_XOR_easy()
    else:
        raise RuntimeError('Dataset Not Found')

    net = Net()

    if args.criterion == 'mse':
        criterion = nn.MSE()
    elif args.criterion == 'crossentropy':
        criterion = nn.CrossEntropy()
    else:
        raise RuntimeError('Criterion Not Found')

    if args.optimizer == 'sgd':
        optimizer = optim.SGD(net.parameters(), lr=args.lr, momentum=args.momentum)
    elif args.optimizer == 'adagrad':
        optimizer = optim.Adagrad(net.parameters(), lr=args.lr)
    else:
        raise RuntimeError('Optimizer Not Found')

    model = Model(net, criterion, optimizer)
    train_history = model.train(X_train, Y_train, epochs=args.epochs)
    test_history = model.test(X_test, Y_test)