def __init__(self, D_in, H1, H2, D_out, weights=''): self.FC1 = nn_layer.FC(D_in, H1) self.ReLU1 = activation.ReLU() self.FC2 = nn_layer.FC(H1, H2) self.ReLU2 = activation.ReLU() self.FC3 = nn_layer.FC(H2, D_out) if weights == '': pass else: # Load weights from file with open(weights, 'rb') as f: params = pickle.load(f) self.set_params(params)
def __init__(self, D_in, H, D_out, weights=''): ''' D_in: input feature dimension H: number of hidden neurons, output dimension of first FC layer and input dimension of second FC layer D_out: output dimension, which is 10 for digit recognition. ''' self.FC1 = nn_layer.FC(D_in, H) self.ReLU1 = activation.ReLU() self.FC2 = nn_layer.FC(H, D_out) if weights == '': pass else: # Load weights from file with open(weights, 'rb') as f: params = pickle.load(f) self.set_params(params)
def __init__(self): self.Cin = 1 self.D_out = 10 # Cin: input channel # Cout: output channel # F: kernel size 3x3 # Conv1: Cin=1, Cout=6, F=3 self.conv1 = conv_layer.Conv (self.Cin, 6, 3) self.ReLU1 = activation.ReLU () self.pool1 = pooling.MaxPool (2,2) # Conv2: Cin=6, Cout=16, F=3 self.conv2 = conv_layer.Conv (6, 16, 3) self.ReLU2 = activation.ReLU () self.pool2 = pooling.MaxPool (2,2) # FC1 flatten to be 64*784 self.FC1 = nn_layer.FC(784, 120) self.ReLU3 = activation.ReLU () self.FC2 = nn_layer.FC (120, 84) self.ReLU4 = activation.ReLU () self.FC3 = nn_layer.FC (84, self.D_out) self.Softmax = activation.Softmax () self.p2_shape = None
def __init__(self, D_in, H1, H2, D_out, weights=''): self.FC1 = nn_layer.FC(D_in, H1) self.ReLU1 = activation.ReLU() self.FC2 = nn_layer.FC(H1, H2) self.ReLU2 = activation.ReLU() self.FC3 = nn_layer.FC(H2, D_out)