def AlexNet(b): # 4D input image tensor with dimensions bx3x227x227 img = nn_ops.InputTensor((b, 3, 227, 227)) # Conv1 + relu + maxpool # Conv input parameters: image, filter dimensions, stride, padding, # no. of pointwise operations that follow the convolution. # Pooling input parameters: image, filter dimensions, stride, padding conv1 = nn_ops.Conv(img, (96, 3, 11, 11), stride=4, pw_op_cnt=1) pool1 = nn_ops.Pooling(conv1.GetOutTensor(0), (3, 3), stride=2) # Conv2 + relu + maxpool conv2 = nn_ops.Conv(pool1.GetOutTensor(0), (256, 96, 5, 5), pad=2, pw_op_cnt=1) pool2 = nn_ops.Pooling(conv2.GetOutTensor(0), (3, 3), stride=2) # Conv3 + relu conv3 = nn_ops.Conv(pool2.GetOutTensor(0), (384, 256, 3, 3), stride=1, pad=1, pw_op_cnt=1) # Conv4 + relu conv4 = nn_ops.Conv(conv3.GetOutTensor(0), (384, 384, 3, 3), stride=1, pad=1, pw_op_cnt=1) # Conv5 + relu + maxpool conv5 = nn_ops.Conv(conv4.GetOutTensor(0), (256, 384, 3, 3), stride=1, pad=1, pw_op_cnt=1) pool5 = nn_ops.Pooling(conv5.GetOutTensor(0), (3, 3), stride=2) # Reshape reshape = nn_ops.Reshape(pool5.GetOutTensor(0), (b, 256 * 6 * 6)) # FC6 + relu fc6 = nn_ops.FC(reshape.GetOutTensor(0), 4096, pw_op_cnt=1) # FC7 + relu fc7 = nn_ops.FC(fc6.GetOutTensor(0), 4096, pw_op_cnt=1) # FC8 fc8 = nn_ops.FC(fc7.GetOutTensor(0), 1024) # Softmax + cross-entropy loss loss = nn_ops.SoftmaxCrossEntropy(fc8.GetOutTensor(0)) return nn_ops.Ops.G
def AddInceptionAux(img, in_channels, num_classes): pool = nn_ops.Pooling(img, (5, 5), stride=3) conv0 = AddBasicConv(pool.GetOutTensor(0), (128, in_channels, 1, 1)) conv1 = AddBasicConv(conv0.GetOutTensor(0), (768, 128, 5, 5)) mean = nn_ops.ReduceMean(conv1.GetOutTensor(0), axis=[2, 3], keepdims=True) fc = nn_ops.FC(mean.GetOutTensor(0), num_classes) return fc
def RNNLM(b): num_layers = 2 vocab_size = 100000 num_units = 2048 max_seq_len = 256 nn_ops.Ops.SetCutoff(1) # This allows splitting along layer dim for # pipelined parallelism # Embedding inp_tsr = nn_ops.InputTensor((b, max_seq_len)) embed = nn_ops.Embedding(inp_tsr, vocab_size, num_units)(0) # RNN rnn = nn_ops.LSTM(embed, num_units, num_layers)(0) # Dense + loss assert rnn == (b, max_seq_len, num_units) y = nn_ops.FC(rnn, vocab_size)(0) loss = nn_ops.SoftmaxCrossEntropy(y)(0) return nn_ops.Ops.G
def ResNet101(b): img = nn_ops.InputTensor((b, 3, 227, 227)) layers = (3, 4, 23, 3) num_classes = 1000 expansion = 4 inplanes = 64 # Bottleneck connections architecture def Bottleneck(img, inplanes, planes, stride=1, downsample=None): identity = img conv1 = nn_ops.Conv(img, (planes, inplanes, 1, 1)) bn1 = nn_ops.BatchNorm(conv1.GetOutTensor(0)) conv2 = nn_ops.Conv(bn1.GetOutTensor(0), (planes, planes, 3, 3), stride=stride, pad=1) bn2 = nn_ops.BatchNorm(conv2.GetOutTensor(0)) conv3 = nn_ops.Conv(bn2.GetOutTensor(0), (planes * expansion, planes, 1, 1)) bn3 = nn_ops.BatchNorm(conv3.GetOutTensor(0)) if downsample is not None: identity = downsample(img) out = nn_ops.Elementwise(bn3.GetOutTensor(0), identity, pw_op_cnt=1) return out def MakeLayer(img, planes, blocks, stride=1): downsample = None nonlocal inplanes if stride != 1 or inplanes != planes * expansion: downsample = lambda x: nn_ops.BatchNorm( nn_ops.Conv(x, (planes * expansion, inplanes, 1, 1), stride=stride).GetOutTensor(0)).GetOutTensor(0) layers = Bottleneck(img, inplanes, planes, stride, downsample) inplanes = planes * expansion for _ in range(1, blocks): layers = Bottleneck(layers.GetOutTensor(0), inplanes, planes) return layers # Conv1 + bn + relu + maxpool conv1 = nn_ops.Conv(img, (64, 3, 7, 7), stride=2, pad=3) bn1 = nn_ops.BatchNorm(conv1.GetOutTensor(0)) pool1 = nn_ops.Pooling(bn1.GetOutTensor(0), (3, 3), stride=2, pad=1) # Layers layer1 = MakeLayer(pool1.GetOutTensor(0), 64, layers[0]) layer2 = MakeLayer(layer1.GetOutTensor(0), 128, layers[1], stride=2) layer3 = MakeLayer(layer2.GetOutTensor(0), 256, layers[2], stride=2) layer4 = MakeLayer(layer3.GetOutTensor(0), 512, layers[3], stride=2) # Avg pooling + FC mean = nn_ops.ReduceMean(layer4.GetOutTensor(0), axis=[2, 3]) fc = nn_ops.FC(mean.GetOutTensor(0), num_classes) # Softmax + cross-entropy loss loss = nn_ops.SoftmaxCrossEntropy(fc.GetOutTensor(0)) return nn_ops.Ops.G
def Inception3(b, aux_logits=False): img = nn_ops.InputTensor((b, 3, 299, 299)) num_classes = 1000 def AddBasicConv(img, fltr, stride=1, padding=0): conv = nn_ops.Conv(img, fltr, stride, padding) bn = nn_ops.BatchNorm(conv.GetOutTensor(0)) return bn def AddInceptionA(img, in_channels, pool_features): branch1x1 = AddBasicConv(img, (64, in_channels, 1, 1)) branch5x5 = AddBasicConv(img, (48, in_channels, 1, 1)) branch5x5 = AddBasicConv(branch5x5.GetOutTensor(0), (64, 48, 5, 5), padding=2) branch3x3dbl = AddBasicConv(img, (64, in_channels, 1, 1)) branch3x3dbl = AddBasicConv(branch3x3dbl.GetOutTensor(0), (96, 64, 3, 3), padding=1) branch3x3dbl = AddBasicConv(branch3x3dbl.GetOutTensor(0), (96, 96, 3, 3), padding=1) branch_pool = nn_ops.Pooling(img, (3, 3), stride=1, pad=1) branch_pool = AddBasicConv(branch_pool.GetOutTensor(0), (pool_features, in_channels, 1, 1)) outputs = nn_ops.Concat([ branch1x1.GetOutTensor(0), branch5x5.GetOutTensor(0), branch3x3dbl.GetOutTensor(0), branch_pool.GetOutTensor(0) ], 1) return outputs def AddInceptionB(img, in_channels): branch3x3 = AddBasicConv(img, (384, in_channels, 3, 3), stride=2) branch3x3dbl = AddBasicConv(img, (64, in_channels, 1, 1)) branch3x3dbl = AddBasicConv(branch3x3dbl.GetOutTensor(0), (96, 64, 3, 3), padding=1) branch3x3dbl = AddBasicConv(branch3x3dbl.GetOutTensor(0), (96, 96, 3, 3), stride=2) branch_pool = nn_ops.Pooling(img, (3, 3), stride=2) outputs = nn_ops.Concat([ branch3x3.GetOutTensor(0), branch3x3dbl.GetOutTensor(0), branch_pool.GetOutTensor(0) ], 1) return outputs def AddInceptionC(img, in_channels, channels_7x7): branch1x1 = AddBasicConv(img, (192, in_channels, 1, 1)) branch7x7 = AddBasicConv(img, (channels_7x7, in_channels, 1, 1)) branch7x7 = AddBasicConv(branch7x7.GetOutTensor(0), (channels_7x7, channels_7x7, 1, 7), padding=(0, 3)) branch7x7 = AddBasicConv(branch7x7.GetOutTensor(0), (192, channels_7x7, 7, 1), padding=(3, 0)) branch7x7_dbl = AddBasicConv(img, (channels_7x7, in_channels, 1, 1)) branch7x7_dbl = AddBasicConv(branch7x7_dbl.GetOutTensor(0), (channels_7x7, channels_7x7, 7, 1), padding=(3, 0)) branch7x7_dbl = AddBasicConv(branch7x7_dbl.GetOutTensor(0), (channels_7x7, channels_7x7, 1, 7), padding=(0, 3)) branch7x7_dbl = AddBasicConv(branch7x7_dbl.GetOutTensor(0), (channels_7x7, channels_7x7, 7, 1), padding=(3, 0)) branch7x7_dbl = AddBasicConv(branch7x7_dbl.GetOutTensor(0), (192, channels_7x7, 1, 7), padding=(0, 3)) branch_pool = nn_ops.Pooling(img, (3, 3), stride=1, pad=1) branch_pool = AddBasicConv(branch_pool.GetOutTensor(0), (192, in_channels, 1, 1)) outputs = nn_ops.Concat([ branch1x1.GetOutTensor(0), branch7x7.GetOutTensor(0), branch7x7_dbl.GetOutTensor(0), branch_pool.GetOutTensor(0) ], 1) return outputs def AddInceptionD(img, in_channels): branch3x3 = AddBasicConv(img, (192, in_channels, 1, 1)) branch3x3 = AddBasicConv(branch3x3.GetOutTensor(0), (320, 192, 3, 3), stride=2) branch7x7x3 = AddBasicConv(img, (192, in_channels, 1, 1)) branch7x7x3 = AddBasicConv(branch7x7x3.GetOutTensor(0), (192, 192, 1, 7), padding=(0, 3)) branch7x7x3 = AddBasicConv(branch7x7x3.GetOutTensor(0), (192, 192, 7, 1), padding=(3, 0)) branch7x7x3 = AddBasicConv(branch7x7x3.GetOutTensor(0), (192, 192, 3, 3), stride=2) branch_pool = nn_ops.Pooling(img, (3, 3), stride=2) outputs = nn_ops.Concat([ branch3x3.GetOutTensor(0), branch7x7x3.GetOutTensor(0), branch_pool.GetOutTensor(0) ], 1) return outputs def AddInceptionE(img, in_channels): branch1x1 = AddBasicConv(img, (320, in_channels, 1, 1)) branch3x3 = AddBasicConv(img, (384, in_channels, 1, 1)) branch3x3_2a = AddBasicConv(branch3x3.GetOutTensor(0), (384, 384, 1, 3), padding=(0, 1)) branch3x3_2b = AddBasicConv(branch3x3.GetOutTensor(0), (384, 384, 3, 1), padding=(1, 0)) branch3x3 = nn_ops.Concat( [branch3x3_2a.GetOutTensor(0), branch3x3_2b.GetOutTensor(0)], 1) branch3x3dbl = AddBasicConv(img, (448, in_channels, 1, 1)) branch3x3dbl = AddBasicConv(branch3x3dbl.GetOutTensor(0), (384, 448, 3, 3), padding=1) branch3x3dbl_3a = AddBasicConv(branch3x3dbl.GetOutTensor(0), (384, 384, 1, 3), padding=(0, 1)) branch3x3dbl_3b = AddBasicConv(branch3x3dbl.GetOutTensor(0), (384, 384, 3, 1), padding=(1, 0)) branch3x3dbl = nn_ops.Concat( [branch3x3dbl_3a.GetOutTensor(0), branch3x3dbl_3b.GetOutTensor(0)], 1) branch_pool = nn_ops.Pooling(img, (3, 3), stride=1, pad=1) branch_pool = AddBasicConv(branch_pool.GetOutTensor(0), (192, in_channels, 1, 1)) outputs = nn_ops.Concat([ branch1x1.GetOutTensor(0), branch3x3.GetOutTensor(0), branch3x3dbl.GetOutTensor(0), branch_pool.GetOutTensor(0) ], 1) return outputs def AddInceptionAux(img, in_channels, num_classes): pool = nn_ops.Pooling(img, (5, 5), stride=3) conv0 = AddBasicConv(pool.GetOutTensor(0), (128, in_channels, 1, 1)) conv1 = AddBasicConv(conv0.GetOutTensor(0), (768, 128, 5, 5)) mean = nn_ops.ReduceMean(conv1.GetOutTensor(0), axis=[2, 3], keepdims=True) fc = nn_ops.FC(mean.GetOutTensor(0), num_classes) return fc conv1a = AddBasicConv(img, (32, 3, 3, 3), stride=2) conv2a = AddBasicConv(conv1a.GetOutTensor(0), (32, 32, 3, 3)) conv2b = AddBasicConv(conv2a.GetOutTensor(0), (64, 32, 3, 3), padding=1) pool = nn_ops.Pooling(conv2b.GetOutTensor(0), (3, 3), stride=2) conv3b = AddBasicConv(pool.GetOutTensor(0), (80, 64, 1, 1)) conv4a = AddBasicConv(conv3b.GetOutTensor(0), (192, 80, 3, 3)) pool = nn_ops.Pooling(conv4a.GetOutTensor(0), (3, 3), stride=2) mixed5b = AddInceptionA(pool.GetOutTensor(0), 192, 32) mixed5c = AddInceptionA(mixed5b.GetOutTensor(0), 256, 64) mixed5d = AddInceptionA(mixed5c.GetOutTensor(0), 288, 64) mixed6a = AddInceptionB(mixed5d.GetOutTensor(0), 288) mixed6b = AddInceptionC(mixed6a.GetOutTensor(0), 768, 128) mixed6c = AddInceptionC(mixed6b.GetOutTensor(0), 768, 160) mixed6d = AddInceptionC(mixed6c.GetOutTensor(0), 768, 160) mixed6e = AddInceptionC(mixed6d.GetOutTensor(0), 768, 192) #if aux_logits: # aux = InceptionAux(mixed6e.GetOutTensor(0), 768, num_classes) mixed7a = AddInceptionD(mixed6e.GetOutTensor(0), 768) mixed7b = AddInceptionE(mixed7a.GetOutTensor(0), 1280) mixed7c = AddInceptionE(mixed7b.GetOutTensor(0), 2048) mean = nn_ops.ReduceMean(mixed7c.GetOutTensor(0), axis=[2, 3]) fc = nn_ops.FC(mean.GetOutTensor(0), num_classes) # Softmax + cross-entropy loss loss = nn_ops.SoftmaxCrossEntropy(fc.GetOutTensor(0)) return nn_ops.Ops.G