Пример #1
0
    print num
    return ax, fig


pca = True
subsample = 1
pca = True
cnn = True
locate = 95

subject_id = 7

if subject_id is 'aud':
    treats = [
        None
    ]  #, 'left/auditory', 'right/auditory', 'left/visual', 'right/visual']
else:
    treats = [None]  #, 'face/famous','scrambled','face/unfamiliar']
nummax = len(treats)
ax = None
fig = None
num = 0
for treat in treats:
    if subject_id is 'aud':
        meas_dims, m, p, n_steps, total_batch_size, Wt = nn_prepro.aud_dataset(
            justdims=True, cnn=cnn, locate=locate, treat=treat)
    else:
        meas_dims, m, p, n_steps, total_batch_size, Wt = nn_prepro.faces_dataset(
            subject_id, cnn=cnn, justdims=True, locate=locate, treat=treat)
Пример #2
0
                                    orient=None,
                                    noise_flag=True,
                                    selection='all',
                                    pca=True,
                                    subsample=1,
                                    justdims=True,
                                    cnn=cnn,
                                    locate=locate,
                                    treat=treat,
                                    rnn=rnn,
                                    Wt=Wt)
                                #print p, "Dipoles returned"
                            else:
                                meas_dims, m, p, n_steps, total_batch_size, Wt = nn_prepro.faces_dataset(
                                    subject_id,
                                    cnn=cnn,
                                    justdims=True,
                                    locate=locate,
                                    treat=None)
                                meas_dims, m, p, n_steps, total_batch_size, Wt = nn_prepro.faces_dataset(
                                    subject_id,
                                    cnn=cnn,
                                    justdims=True,
                                    locate=locate,
                                    treat=treat,
                                    Wt=Wt)

                            test, val, batch_list, batches = nn_prepro.ttv(
                                total_batch_size,
                                test_frac,
                                val_frac,
                                batch_frac,
Пример #3
0
                'n_layer', 'n_lstm', 'n_steps', 'train step', 'xentropy',
                'rmse', 'accuracy', 'xentropy_last', 'rmse_last',
                'accuracy_last'
            ]
            subsample = 1
            fname = './data/check_nn_real_relu_%s_%s_pca_%s_rand_%s.csv' % (
                train_id, test_id, pca, rand_test)
            with open(fname, 'a') as csvfile:
                writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
                writer.writeheader()

                for [
                        n_conv1, n_conv2, n_lstm, n_layer, test_frac, val_frac,
                        batch_frac
                ] in params_list:
                    meas_dims, m, p, n_steps, total_batch_size = nn_prepro.faces_dataset(
                        train_id, locate=True)
                    meas_dims, m, p, n_steps, total_batch_size_test = nn_prepro.faces_dataset(
                        test_id, locate=True)

                    a = np.arange(0, total_batch_size)
                    a_test = np.arange(0, total_batch_size_test)

                    #halt criteria
                    delta_v_err_halt = 1.
                    delta_err_halt = 2e-5

                    val_step = 50
                    cost = 'rmse'
                    cost_step = 'last'
                    learning_rate = 0.001
                    dropout = 1.0