def visitClassicBatches(nn, data, labels, val_d, val_l, l, test_val, it=1000): for c in range(it): for cc in range(len(data)): nnS.minibatch_fit(nn, data[cc], labels[cc]) if c % 10 == 0: acc = accuracy(nn, val_d, val_l, thr=0.5) l[test_val][c / 10] = acc print acc
def visitClassicBatches(nn,data,labels, val_d, val_l, l, test_val, it=1000): for c in range(it): for cc in range(len(data)): nnS.minibatch_fit(nn, data[cc], labels[cc]) if c %10 == 0: acc = accuracy(nn, val_d, val_l, thr = 0.5) l[test_val][c/10] = acc print acc
def visitClassicBatches(nn,data,labels, it=1000): for c in range(it): for cc in range(len(data)): nnS.minibatch_fit(nn, data[cc], labels[cc])
def visitClassicBatches(nn, data, labels, it=1000): for c in range(it): for cc in range(len(data)): nnS.minibatch_fit(nn, data[cc], labels[cc])