Пример #1
0
def load_data(folder,
              size,
              first=0,
              last=None,
              read_flag=cv2.IMREAD_UNCHANGED):
    return list(
        map(lambda x: cv2.resize(cv2.imread(x, read_flag), size) / 255,
            sorted(listdir_fullpath(folder))[first:last]))
Пример #2
0
def load_fixation_locs(folder, size=(224, 224)):
    maps = []

    for fix_map_name in listdir_fullpath(folder):

        fix_map = np.array(scipy.io.loadmat(fix_map_name)['fixLocs'])
        y_size, x_size = fix_map.shape
        ones = np.where(fix_map > 0)
        resized_map = np.zeros(size)

        for y, x in zip(ones[0], ones[1]):

            resized_map[int(y / y_size * size[0]),
                        int(x / x_size * size[1])] = 1

        maps.append(resized_map)

    return np.array(maps)
Пример #3
0
def predict(heatmap_type='jet'):

    # creates model of neural network
    prediction = neural_network_model(x, keep_prob)
    cross_entropy = tf.reduce_mean(
        tf.nn.sigmoid_cross_entropy_with_logits(logits=prediction, labels=y))

    images_for_prediction = np.array(
        load_data(args.images, (64, 64), first=5000))
    images_original = sorted(listdir_fullpath(args.images))[5000:]
    original_maps = np.array(load_data(args.maps, (64, 64), first=5000))
    saver = tf.train.Saver()

    with tf.Session() as sess:
        saver.restore(sess, args.model)  # restores saved model

        predicted_heatmaps = make_prediction(prediction, {
            x: images_for_prediction,
            keep_prob: 1.0
        })

        binary_maps = np.array(
            get_binary_fixation_maps(args.binary_maps, size=64, first=5000))

        count_metrics(predicted_heatmaps, original_maps, binary_maps)

        i = 0
        for map, img in zip(predicted_heatmaps, images_original):
            i += 1
            #print ("working on: " + str(img.rsplit('/', 1)[1]))
            # saving predicted heatmaps on image
            visualize_heatmap(map, img, args.save_to, heatmap_type)

            i += 1
            p = map
            print(str(i) + ". saving " + str(img.rsplit('/', 1)[1]))
            plt.imshow(p, cmap='jet')
            toimage(p).save("predicted_maps/" + str(img.rsplit('/', 1)[1]))
            plt.savefig("predicted_maps/plot_" + str(img.rsplit('/', 1)[1]))
            if i == 50:
                break
Пример #4
0
def get_binary_fixation_maps(folder, size=256, first=0, last=None):
    ret_maps = []

    extracted_data = list(
        map(
            lambda x: {
                'file': x.rsplit('/', 1)[1].replace(".mat", ".jpg"),
                **get_size_and_fix(loadmat(x)['s'])
            },
            sorted(listdir_fullpath(folder))[first:last]))

    for data in extracted_data:
        #print("working on file: " + data['file'])
        final_map = np.zeros([size, size])

        for i in range(1, 6):
            user_key = 'user_' + str(i)
            user_fix = data[user_key]
            final_map = apply_fixations(data['size'], data[user_key],
                                        final_map)

        ret_maps.append(final_map)

    return ret_maps
Пример #5
0
    config = tf.ConfigProto(intra_op_parallelism_threads=12,\
        inter_op_parallelism_threads=12, allow_soft_placement=True,\
        device_count = {'CPU' : 1, 'GPU' : 0})
    config.gpu_options.allow_growth = True
    session = tf.Session(config=config)
    K.set_session(session)

#model = load_model('adadelta+binary.save')
model = load_model(args.model)

model.compile(loss=args.loss, optimizer=args.optimizer, metrics=['accuracy'])

model.summary()

imgs = np.array(load_data(args.images, (n, n), read_flag=cv2.IMREAD_COLOR))
img_names = sorted(listdir_fullpath(args.images))

predicted = model.predict(imgs, verbose=1)

i = 0
if not os.path.exists("predicted_maps"):
    os.makedirs("predicted_maps")
for p, img in zip(predicted, img_names):
    i += 1
    #print(str(i) + ". saving " + str(img.rsplit('/', 1)[1]))
    plt.imshow(p, cmap='jet')
    if not os.path.exists("predicted_maps/" + args.model.rsplit("/", 2)[-1]):
        os.makedirs("predicted_maps/" + args.model.rsplit("/", 2)[-1])

    toimage(p).save("predicted_maps/" + args.model.rsplit("/", 2)[-1] + "/" +
                    str(img.rsplit('/', 1)[1]))
Пример #6
0
x = Conv2D(filters=1, kernel_size=5, activation='sigmoid', padding='same')(x)
print(K.int_shape(x))

x = Reshape((n, n))(x)

final = Model(input_layer, x)
small_model = None
autoencoder = None

final.compile(optimizer=args.optimizer, loss=args.loss)
final.summary()

split = int(0.85 * args.samples)

imgs_paths = sorted(listdir_fullpath(args.images))
maps_paths = sorted(listdir_fullpath(args.maps))

train_imgs_paths = imgs_paths[:split]
train_maps_paths = maps_paths[:split]

valid_imgs_paths = imgs_paths[split:]
valid_maps_paths = maps_paths[split:]

print("number of train samples: " + str(len(train_imgs_paths)))
print("number of valid samples: " + str(len(valid_imgs_paths)))

train_img_map_ds = load_images_and_maps(train_imgs_paths, train_maps_paths,
                                        (n, n))
valid_img_map_ds = load_images_and_maps(valid_imgs_paths, valid_maps_paths,
                                        (n, n))