def _set_shape(graph, value, shape): if isinstance(value, nnef.Identifier): tensor = graph.tensors[value] graph.tensors[value] = nnef.Tensor(tensor.name, tensor.dtype, shape, tensor.data, tensor.compression, tensor.quantization) elif isinstance(value, list): for v, s in zip(value, shape): _set_shape(graph, v, s)
# you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import nnef import numpy as np from collections import OrderedDict input = nnef.Tensor('input', dtype='scalar') filter = nnef.Tensor('filter', dtype='scalar', data=np.random.randn(32, 3, 5, 5)) output = nnef.Tensor('output', dtype='scalar') external = nnef.Operation('external', attribs={'shape': [1, 3, 224, 224]}, inputs=OrderedDict(), outputs=OrderedDict([('output', nnef.Identifier('input'))])) variable = nnef.Operation('variable', attribs={ 'shape': [32, 3, 5, 5], 'label': 'conv/filter' },