Пример #1
0
    def minimize_val(self, vector):
        '''get the minimum value of the zonotope projected onto the passed-in direction

        similar to zonotope.maximize but slightly faster
        '''

        Timers.tic('zonotope.minimize_val')

        rv = self.center.dot(vector)

        # project vector (a generator) onto row, to check if it's positive or negative
        #res_vec = np.dot(self.mat_t.transpose(), vector) # slow? since we're taking transpose
        res_vec = np.dot(vector, self.mat_t)

        #Timers.tic('loop')
        #for res, ib in zip(res_vec, self.init_bounds):
        #    factor = ib[1] if res <= 0 else ib[0]

        #    rv += factor * res

        #Timers.toc('loop')

        if self.init_bounds_nparray is None:
            self.init_bounds_nparray = np.array(self.init_bounds,
                                                dtype=self.dtype)

        ib = self.init_bounds_nparray

        res = np.where(res_vec <= 0, ib[:, 1], ib[:, 0])

        rv += res.dot(res_vec)

        Timers.toc('zonotope.minimize_val')

        return rv
Пример #2
0
    def advance_star(self):
        '''advance current star (self.priv.ss)

        A precondition to this is that ss is already at the next split point.

        The logic for this is:

        1. do split, creating new_star
        2. propagate up to next split with ss
        3. propagate up to next split with new_star
        4. save new_star to remaining work
        '''

        Timers.tic('advance')

        ss = self.priv.ss
        network = self.shared.network
        spec = self.shared.spec

        if not ss.is_finished(network):
            new_star = ss.do_first_relu_split(network, spec,
                                              self.priv.start_time)

            ss.propagate_up_to_split(network, self.priv.start_time)

            if new_star:  # new_star can be null if it wasn't really a split (copy prefilter)
                new_star.propagate_up_to_split(network, self.priv.start_time)

                # note: new_star may be done... but for expected branching order we still add it
                self.priv.stars_in_progress += 1
                self.priv.work_list.append(new_star)

        Timers.toc('advance')
Пример #3
0
def check_round(ss, sets, spec_arg, check_cancel_func=None):
    '''check overapproximation result of one round against spec

    this may modify ss.safe_spec_list is part of the spec is proven as safe

    This returns is_safe?, violation_stars, violation_indices
    '''

    Timers.tic('overapprox_check_round')

    if check_cancel_func is None:
        check_cancel_func = lambda: False

    whole_safe = True

    unsafe_violation_stars = [
    ]  # list of violation stars for each part of the disjunctive spec
    unsafe_violation_indices = []  # index in spec_list

    # break it apart disjunctive specs, as quicker overapproximation may work for some parts and not others
    spec_list = spec_arg.spec_list if isinstance(
        spec_arg, DisjunctiveSpec) else [spec_arg]

    for i, single_spec in enumerate(spec_list):

        if ss.safe_spec_list is not None and ss.safe_spec_list[i]:
            continue

        single_safe = False

        violation_star = None

        for s in sets:
            single_safe = s.check_spec(single_spec, check_cancel_func)

            if isinstance(s, StarOverapprox) and not single_safe:
                violation_star = s.violation_star

            #print(f".check_round checking spec with set {s}, result: {single_safe}")

            if single_safe:
                if ss.safe_spec_list is not None:
                    ss.safe_spec_list[i] = True

                break  # done with this spec!

        if not single_safe:
            whole_safe = False

            if violation_star is not None:
                unsafe_violation_stars.append(violation_star)
                unsafe_violation_indices.append(i)

            if not Settings.CONTRACT_OVERAPPROX_VIOLATION:
                # if contracting violation, we need all violation stars
                break

    Timers.toc('overapprox_check_round')

    return whole_safe, unsafe_violation_stars, unsafe_violation_indices
Пример #4
0
    def minimize_output(self, output_index, maximize=False):
        '''
        get the output value when one of the outputs is minimized (or maximized)

        if stop_at_zero is set, this will terminate the search once zero is crossed

        if you want the (input, output) pair to produce this output, use consutrct_last_io()
        '''

        Timers.tic('minimize_output')

        if self.a_mat.size == 0:
            value = self.bias
        else:
            row = self.a_mat[output_index]

            if maximize:
                row = -1 * row

            self.last_lp_result = lp_result = self.lpi.minimize(row)
            self.num_lps += 1

            num_init_vars = self.a_mat.shape[1]
            assert len(lp_result) == num_init_vars

            # single row
            value = self.a_mat[output_index].dot(
                lp_result) + self.bias[output_index]

        Timers.toc('minimize_output')

        return value
Пример #5
0
    def try_single(self):
        '''try to generate an adversarial image for the single value of epsilon (quick)

        returns [adversarial image, epsilon], if found, else None
        '''

        Timers.tic('try_single')

        rv = None

        t = Settings.ADVERSARIAL_TARGET
        criterion = fb.criteria.Misclassification() if t is None else fb.criteria.TargetClass(t)

        with self.sess.as_default():
            attack = SingleEpsilonRPGD(self.fmodel, distance=fb.distances.Linfinity, criterion=criterion)

            # subtract a small amount since attack was overshooting by numerical precision
            SingleEpsilonRPGD.set_epsilon(self.epsilon - 1e-6)

            Timers.tic('attack')
            a = attack(self.orig_image, self.labels, unpack=False)[0]
            Timers.toc('attack')

            dist = a.distance.value

            if dist != np.inf:
                rv = [a.perturbed, dist]
                rv[0].shape = self.orig_image.shape

        Timers.toc('try_single')

        return rv
Пример #6
0
    def zono_might_violate_spec(self, zono):
        '''is it possible that the zonotope violates the spec?

        sometimes we can prove it's impossible. If this returns True, though, it doesn't mean there's an
        intersection (except in the case of single-row specifications)

        returns True or False
        '''

        # strategy: check if each row individually can have a violation... necessary condition for intersection

        Timers.tic('zono_might_violate_spec')

        might_violate = True

        for i, row in enumerate(self.mat):
            min_dot = zono.minimize_val(row)

            if min_dot > self.rhs[i]:
                might_violate = False
                break

        Timers.toc('zono_might_violate_spec')

        return might_violate
Пример #7
0
    def set_constraints_csr(self, data, glpk_indices, indptr, shape):
        '''
        set the constrains row by row to be equal to the passed-in csr matrix attribues

        glpk_indices is already offset by one
        '''

        Timers.tic('set_constraints_csr')
        assert shape[0] <= self.get_num_rows()
        assert shape[1] <= self.get_num_cols()

        # actually set the constraints row by row
        assert isinstance(data, list), "data was not a list"

        for row in range(shape[0]):
            # we must copy the indices since glpk is offset by 1 :(
            count = int(indptr[row + 1] - indptr[row])

            #indices_list = glpk_indices[indptr[row]:indptr[row+1]]
            #indices_vec = SwigArray.as_int_array(indices_list)
            indices_vec = SwigArray.as_int_array(
                glpk_indices[indptr[row]:indptr[row + 1]], count)

            #data_row_list = [float(d) for d in data[indptr[row]:indptr[row+1]]]
            #data_vec = SwigArray.as_double_array(data_row_list)
            data_vec = SwigArray.as_double_array(
                data[indptr[row]:indptr[row + 1]], count)

            glpk.glp_set_mat_row(self.lp, 1 + row, count, indices_vec,
                                 data_vec)

        Timers.toc('set_constraints_csr')
Пример #8
0
    def from_init_box(self, uncompressed_init_box):
        'initialize from an initial box'

        Timers.tic('make bm')

        if Settings.COMPRESS_INIT_BOX:
            init_bm, init_bias, init_box = compress_init_box(
                uncompressed_init_box)
        else:
            dims = len(uncompressed_init_box)
            #init_bm = np.identity(dims)
            #init_bias = np.zeros(dims)
            init_bm = None
            init_bias = None
            init_box = uncompressed_init_box

        Timers.toc('make bm')

        # for finding concrete counterexamples
        Timers.tic('star')
        self.star = LpStar(init_bm, init_bias, init_box)
        Timers.toc('star')

        self.prefilter = Prefilter()
        self.prefilter.init_from_uncompressed_box(uncompressed_init_box,
                                                  self.star, init_box)
Пример #9
0
    def found_unsafe(self, concrete_io_tuple):
        '''found a concrete counter-example, update shared variables.

        concrete_io_tuple may be None, in the case of unconfirmed counterexamples
        '''

        if self.shared.result.found_confirmed_counterexample.value == 0:
            #########################
            Timers.tic('update_shared')
            self.shared.mutex.acquire()

            self.shared.result.found_counterexample.value = 1

            if concrete_io_tuple is not None:
                self.shared.result.found_confirmed_counterexample.value = 1
                self.shared.should_exit.value = True

                for i, val in enumerate(concrete_io_tuple[0]):
                    self.shared.result.cinput[i] = val

                for i, val in enumerate(concrete_io_tuple[1]):
                    self.shared.result.coutput[i] = val

            self.shared.mutex.release()
            Timers.toc('update_shared')
Пример #10
0
def _v_h_rep_given_init_simplex(init_simplex, supp_point_func, epsilon=1e-7):
    '''get all the vertices and hyperplanes of (an epsilon approximation of) the set, defined through supp_point_func

    This function is provided with an initial simplex which spans the space

    this returns verts, equations, where equations is from the Convex Hull's (hull.equations)
    '''

    new_pts = init_simplex

    verts = []
    iteration = 0
    max_error = None

    while new_pts:
        iteration += 1
        #print(f"\nIteration {iteration}. Verts: {len(verts)}, new_pts: {len(new_pts)}, max_error: {max_error}")

        first_new_index = len(verts)
        verts += new_pts
        new_pts = []
        max_error = 0

        Timers.tic('ConvexHull')
        hull = ConvexHull(verts)
        Timers.toc('ConvexHull')

        for i, simplex in enumerate(hull.simplices):
            is_new = False

            for index in simplex:
                if index >= first_new_index:
                    is_new = True
                    break

            if not is_new:
                continue  # skip this simplex

            # get hyperplane for simplex
            normal = hull.equations[i, :-1]
            rhs = -1 * hull.equations[i, -1]

            Timers.tic('supp_point_func')
            supporting_pt = supp_point_func(normal)
            Timers.toc('supp_point_func')

            error = np.dot(supporting_pt, normal) - rhs
            max_error = max(max_error, error)

            #assert error >= -1e-7, "supporting point was inside facet?"

            if error >= epsilon:
                # add the point... at this point points may be added twice... this doesn't seem to matter
                new_pts.append(supporting_pt)

    #points[hull.vertices]

    return np.array(verts, dtype=float), hull.equations
Пример #11
0
def make_split_indices(layer_bounds):
    'make split indices from layer bounds'

    Timers.tic('make_split_indices')
    split_indices = np.nonzero(np.logical_and(layer_bounds[:, 0] < -Settings.SPLIT_TOLERANCE, \
                                              layer_bounds[:, 1] > Settings.SPLIT_TOLERANCE))[0]
    Timers.toc('make_split_indices')

    return split_indices
Пример #12
0
    def try_mixed_adversarial(self, iteration, random_only):
        '''
        try generating an adversarial using a mixed strategy, depending on the iteration

        returns [adversarial image, epsilon], if found, else None
        '''

        rv = None

        classes = [fb.attacks.FGSM, # 0.057 in 41ms
         fb.attacks.ContrastReductionAttack, # 0.05 in 64 ms
         fb.attacks.BlendedUniformNoiseAttack, # 0.09 in 93ms
         fb.attacks.DecoupledDirectionNormL2Attack, # 0.074 in 124ms
         fb.attacks.BIM, # 0.044 in 300 ms
         fb.attacks.PGD, # 0.05 in 1302 ms
         fb.attacks.MomentumIterativeAttack, # 0.04 in 300 ms
         fb.attacks.AdamPGD, #0.055 in 800ms
         fb.attacks.AdamRandomPGD, # 0.042 in 700ms
         fb.attacks.RandomPGD # best
         ]

        # pick the attack class...
        attack_class = None
        
        if not random_only and iteration < len(classes):
            attack_class = classes[iteration]

        t = Settings.ADVERSARIAL_TARGET
        criterion = fb.criteria.Misclassification() if t is None else fb.criteria.TargetClass(t)
            
        with self.sess.as_default():
            if attack_class is None:
                attack_class = SingleEpsilonRPGD
                attack = SingleEpsilonRPGD(self.fmodel, distance=fb.distances.Linfinity, criterion=criterion)

                # subtract a small amount since attack was overshooting by numerical precision
                SingleEpsilonRPGD.set_epsilon(self.epsilon - 1e-6)
            else:
                attack = attack_class(self.fmodel, distance=fb.distances.Linfinity, criterion=criterion)

            Timers.tic('attack')
            a = attack(self.orig_image, self.labels, unpack=False)[0]
            Timers.toc('attack')

            dist = a.distance.value

            #print(f"attack class: {attack_class}, ep: {dist}, iteration {iteration}")

            if dist <= Settings.ADVERSARIAL_EPSILON:
                rv = a.perturbed
                rv.shape = self.orig_image.shape

        if rv is not None:
            print(f"try_mixed_adversarial found violation image on iteration {iteration} with ep={dist} and " + \
                  f"attack class: {attack_class}")

        return rv
Пример #13
0
def get_verts_nd(lpi, dims):
    '''
    get an the n-dimensional vertices

    if dims is an int, this uses the first dim coordinates of the lpi
    '''

    assert isinstance(dims, list), f"unsupported dims type: {type(dims)}"
    dim_list = dims

    for dim in dim_list:
        assert dim < lpi.dims, f"lpi has {lpi.dims} dims, but requested dim_list was {dim_list}"

    # algorithm: Kamenev's method in n-d

    def supp_point_nd(vec):
        'return a supporting point for the given direction (maximize)'

        assert len(vec) == len(dim_list)
        assert lpi.dims > 0

        Timers.tic('construct')
        d = np.zeros((lpi.dims, ), dtype=float)
        # negative here because we want to MAXIMIZE not minimize

        for i, dim_index in enumerate(dim_list):
            d[dim_index] = -vec[i]

        Timers.toc('construct')

        Timers.tic('set_minimize_dir')
        lpi.set_minimize_direction(d)
        Timers.toc('set_minimize_dir')

        Timers.tic('lpi.minimize')
        res = lpi.minimize(
            columns=[lpi.cur_vars_offset + n for n in range(lpi.dims)])
        Timers.toc('lpi.minimize')

        Timers.tic('make res')
        rv = []

        for dim in dim_list:
            rv.append(res[dim])

        rv = np.array(rv, dtype=float)
        Timers.toc('make res')

        return rv

    Timers.tic('kamenev.get_verts')
    verts = kamenev.get_verts(len(dim_list), supp_point_nd)
    Timers.toc('kamenev.get_verts')

    return verts
Пример #14
0
    def put_queue(self, ss):
        'put a starstate on the queue'

        Timers.tic('put_queue')

        if self.multithreaded:
            ss.star.lpi.serialize()

        self.more_work_queue.put(ss)

        Timers.toc('put_queue')
Пример #15
0
def _find_init_simplex(dims, supp_point_func):
    '''
    find an n-dimensional initial simplex
    '''

    Timers.tic('init_simplex')

    # first, construct the initial simplex and determine a basis for the convex set (it may be degenerate)
    init_simplex = _find_two_points(dims, supp_point_func)

    if len(init_simplex
           ) == 2:  # S may be a degenerate shape consisting of a single point
        init_vec = init_simplex[1] - init_simplex[0]

        spanning_dirs = [init_vec]
        degenerate_dirs = []
        vecs = [init_vec]

        for _ in range(dims - 1):
            new_dir, rank = _get_orthonormal_rank(vecs)

            # min/max in direction v, checking if it increases the rank of vecs
            pt = supp_point_func(new_dir)
            vecs.append(pt - init_simplex[0])

            if _get_rank(vecs) > rank:
                init_simplex.append(pt)
                spanning_dirs.append(vecs[-1])
                continue

            # rank did not increase with maximize, try minimize
            vecs = vecs[0:-1]  # pop vec

            pt = supp_point_func(-1 * new_dir)
            vecs.append(pt - init_simplex[0])

            if _get_rank(vecs) > rank:
                init_simplex.append(pt)
                spanning_dirs.append(vecs[-1])
                continue

            # rank still didn't increase, new_dir is orthogonal to shape S
            vecs = vecs[0:-1]  # pop vec

            vecs.append(
                new_dir
            )  # forces a new orthonormal direction during the next iteration
            degenerate_dirs.append(new_dir)

    Timers.toc('init_simplex')

    return init_simplex
Пример #16
0
    def supp_point_nd(vec):
        'return a supporting point for the given direction (maximize)'

        assert len(vec) == len(dim_list)
        assert lpi.dims > 0

        Timers.tic('construct')
        d = np.zeros((lpi.dims, ), dtype=float)
        # negative here because we want to MAXIMIZE not minimize

        for i, dim_index in enumerate(dim_list):
            d[dim_index] = -vec[i]

        Timers.toc('construct')

        Timers.tic('set_minimize_dir')
        lpi.set_minimize_direction(d)
        Timers.toc('set_minimize_dir')

        Timers.tic('lpi.minimize')
        res = lpi.minimize(
            columns=[lpi.cur_vars_offset + n for n in range(lpi.dims)])
        Timers.toc('lpi.minimize')

        Timers.tic('make res')
        rv = []

        for dim in dim_list:
            rv.append(res[dim])

        rv = np.array(rv, dtype=float)
        Timers.toc('make res')

        return rv
Пример #17
0
    def save_poly(self, ss):
        'save the polygon verts for the current, finished star into result.polys'

        Timers.tic('save_poly')

        xdim, ydim = Settings.RESULT_SAVE_POLYS_DIMS

        # save polygon
        verts = ss.star.verts(xdim,
                              ydim,
                              epsilon=Settings.RESULT_SAVE_POLYS_EPSILON)
        self.shared.result.polys.append(verts)

        Timers.toc('save_poly')
Пример #18
0
    def split_overapprox(self, layer_num, new_generators_bm, i, lb, ub):
        '''helper for execute_relus_overapprox

        split a ReLU using a star overapproximation'''

        Timers.tic('split_overapprox')

        # make a new variable y for the output
        self.lpi.add_positive_cols([f'y{layer_num}_{i}'])
        num_cols = self.lpi.get_num_cols()
        num_zeros = num_cols - self.a_mat.shape[1] - 1

        #zero_row = np.zeros((self.star.a_mat.shape[1],))

        # create 3 constraints for new variable
        # (1) y >= 0 === -y <= 0
        # this constraint is automatically added in lp_star for all non-cur variables

        # (2) y >= x[i] === x[i] - y <= 0
        # x[i] equals row i in the basis matrix (also the bias on the rhs)

        row = np.zeros((num_cols, ), dtype=self.a_mat.dtype)
        a_mat_width = self.a_mat.shape[1]

        assert a_mat_width <= num_cols, f"a_mat_width: {a_mat_width}, num_cols: {num_cols}"

        row[:a_mat_width] = self.a_mat[i, :]
        row[-1] = -1
        self.lpi.add_dense_row(row, -self.bias[i])

        # (3) y <= ub*(x[i]-lb) / (ub - lb) === y - ub*x[i] / (ub - lb) - (ub*(-lb) / (ub - lb)) <= 0
        # === y - ub(ub - lb) * x[i] <= ub*(-lb) / (ub - lb)
        # x[i] equals row i in the basis matrix
        factor = ub / (ub - lb)
        row = np.zeros((num_cols, ), dtype=self.a_mat.dtype)
        row[:self.a_mat.shape[1]] = -1 * factor * self.a_mat[i]
        row[-1] = 1
        rhs = -lb * factor + self.bias[i] * factor
        self.lpi.add_dense_row(row, rhs)

        # reset the current bias
        # the rhs of the current variable is not referenced by other constraints (constraints never ref rhs)
        self.bias[i] = 0

        # ReLU case, introduce new variable
        self.a_mat[i] = 0

        new_generators_bm[i, num_zeros] = 1

        Timers.toc('split_overapprox')
Пример #19
0
    def push_init(self, ss):
        'put the initial init box or star onto the work queue'

        Timers.tic('push_init')

        # without the mutex here, if the threads start quickly, they may exit before finding the first piece of work
        # since the queue can be asynchronous
        ##############################
        self.mutex.acquire()
        self.put_queue(ss)
        self.stars_in_progress.value = 1
        self.mutex.release()
        ##############################

        Timers.toc('push_init')
Пример #20
0
    def construct_last_io(self):
        '''construct the last concrete input/output pair from the optimization performed when minimize_output was called

        note that the input will be the compressed input if input space is not full dimensional
        '''

        Timers.tic('construct_last_io')

        i = self.last_lp_result

        o = np.dot(self.a_mat, i) + self.bias

        Timers.toc('construct_last_io')

        return [i, o]
Пример #21
0
    def shuffle_work(self):
        'shuffle work'

        Timers.tic('shuffle')

        if self.priv.worker_index == 0:
            # print queues
            qsize = self.shared.more_work_queue.qsize()

        #self.priv.next_shuffle_step *= 2 # exponential backoff
        self.priv.next_shuffle_time += self.priv.next_shuffle_step

        global_work = []

        while True:
            ss = self.shared.get_global_queue(timeout=0.01)

            if ss is None:
                break

            global_work.append(ss)

        if self.priv.ss:
            i = self.priv.worker_index
            my = len(self.priv.work_list)
            print(f".{i}: my work size {my}", flush=True)

            self.shared.put_queue(self.priv.ss)
            self.priv.num_offloaded += 1

            #self.priv.work_list.append(self.priv.ss)
            self.priv.ss = None

        self.priv.work_list += global_work

        # shuffle remaining work and put it all into the queue
        random.shuffle(self.priv.work_list)

        #for ss in self.priv.work_list:
        #    self.shared.put_queue(ss)
        #    self.priv.num_offloaded += 1

        #self.priv.work_list = []
        #self.priv.shared_update_urgent = True
        #self.priv.fulfillment_requested_time = time.perf_counter()

        Timers.toc('shuffle')
Пример #22
0
    def execute(self, state, save_branching=False):
        '''execute the layer on a concrete state

        if save_branching is True, returns (output, branch_list), where branch_list is a list of booleans for each
            neuron in the layer that is True if the nonnegative branch of the ReLU was taken, False if negative
 
        otherwise, just returns output
        '''

        Timers.tic('execute relu')

        if save_branching:
            branch_list = []

        assert state.shape == self.get_input_shape(), f"state shape to fully connected layer was {state.shape}, " + \
            f"expected {self.get_input_shape()}"

        state = nn_flatten(state)

        if save_branching:
            for i, val in enumerate(state):
                if self.filter_func is not None:
                    if not self.filter_func(i):
                        continue

                branch_list.append(val >= 0)

        if self.filter_func is None:
            state = np.clip(state, 0, np.inf)
        else:
            res = []

            for i, val in enumerate(state):
                if not self.filter_func(i):
                    res.append(val)
                else:
                    res.append(max(0, val))

            state = np.array(res, dtype=float)

        rv = nn_unflatten(state, self.shape)

        rv = (rv, branch_list) if save_branching else rv

        Timers.toc('execute relu')

        return rv
Пример #23
0
    def verts(self, xdim=0, ydim=1, epsilon=1e-7):
        'get a 2-d projection of this lp_star'

        dims = self.a_mat.shape[0]

        if isinstance(xdim, int):
            assert 0 <= xdim < dims, f"xdim {xdim} out of bounds for star with {dims} dims"
            vec = np.zeros(dims, dtype=float)
            vec[xdim] = 1
            xdim = vec
        else:
            assert xdim.size == dims

        if isinstance(ydim, int):
            assert 0 <= ydim < dims, f"ydim {ydim} out of bounds for star with {dims} dims"
            vec = np.zeros(dims, dtype=float)
            vec[ydim] = 1
            ydim = vec
        else:
            assert ydim.size == dims

        def supp_point_func(vec2d):
            'maximize a support function direction'

            Timers.tic('supp_point_func')

            # use negative to maximize
            lpdir = -vec2d[0] * xdim + -vec2d[1] * ydim

            res = self.minimize_vec(lpdir)

            Timers.toc('supp_point_func')

            # project onto x and y
            resx = np.dot(xdim, res)
            resy = np.dot(ydim, res)

            return np.array([resx, resy], dtype=float)

        Timers.tic('kamenev.get_verts')
        verts = kamenev.get_verts(2, supp_point_func, epsilon=epsilon)
        Timers.toc('kamenev.get_verts')

        #assert np.allclose(verts[0], verts[-1])

        return verts
Пример #24
0
def try_quick_overapprox(ss, network, spec, start_time, found_adv):
    'try a quick overapproximation, return True if safe'

    Timers.tic('try_quick_overapprox')

    overapprox_types = Settings.QUICK_OVERAPPROX_TYPES

    def check_cancel_func():
        'worker cancel func. can raise OverapproxCanceledException'

        diff = time.perf_counter() - start_time

        if diff > Settings.TIMEOUT:
            raise OverapproxCanceledException('timeout exceeded')

        if found_adv is not None and found_adv.value != 0:
            raise OverapproxCanceledException('found_adv was set')

    try:
        check_cancel_func()

        prerelu_sims = make_prerelu_sims(ss, network)

        check_cancel_func()

        if Settings.PRINT_OUTPUT and Settings.PRINT_OVERAPPROX_OUTPUT:
            print(
                f"Doing quick overapprox with {len(overapprox_types)} rounds..."
            )

        rr = do_overapprox_rounds(ss,
                                  network,
                                  spec,
                                  prerelu_sims,
                                  check_cancel_func=check_cancel_func,
                                  overapprox_types=overapprox_types)

        rv = rr.is_safe, rr.concrete_io_tuple
    except OverapproxCanceledException as e:
        if Settings.PRINT_OUTPUT:
            print(f"Overapprox canceled ({e})")
        rv = False, None

    Timers.toc('try_quick_overapprox')

    return rv
Пример #25
0
        def supp_point_func(vec2d):
            'maximize a support function direction'

            Timers.tic('supp_point_func')

            # use negative to maximize
            lpdir = -vec2d[0] * xdim + -vec2d[1] * ydim

            res = self.minimize_vec(lpdir)

            Timers.toc('supp_point_func')

            # project onto x and y
            resx = np.dot(xdim, res)
            resy = np.dot(ydim, res)

            return np.array([resx, resy], dtype=float)
Пример #26
0
def make_init_ss(init, network, spec, start_time):
    'make the initial star state'

    network_inputs = network.get_num_inputs()
    network_outputs = network.get_num_outputs()

    if spec is not None:
        assert network_outputs == spec.get_num_expected_variables(), \
            f"spec expected {spec.get_num_expected_variables()} outputs; network had {network_outputs} outputs"

    if isinstance(init, (list, tuple, np.ndarray)):
        init_box = init

        assert len(
            init_box
        ) == network_inputs, f"expected {network_inputs} dim init box, got {len(init_box)}"

        ss = LpStarState(init_box, spec=spec)
    elif isinstance(init, LpStar):
        assert isinstance(init, LpStar), 'init must be box or star'

        assert len(init.bias) == network_inputs

        ss = LpStarState(spec=spec)
        ss.from_init_star(init)
    else:
        assert isinstance(init, LpStarState)
        ss = init

    ss.should_try_overapprox = False

    # propagate the initial star up to the first split
    timer_name = Timers.stack[-1].name if Timers.stack else None

    try:  # catch lp timeout
        Timers.tic('propagate_up_to_split')
        ss.propagate_up_to_split(network, start_time)
        Timers.toc('propagate_up_to_split')
    except LpCanceledException:
        while Timers.stack and Timers.stack[-1].name != timer_name:
            Timers.toc(Timers.stack[-1].name)

        ss = None

    return ss
Пример #27
0
    def contract_lp(self, star):
        '''do lp zonotope contraction

        returns True if domain was tightened
        '''

        Timers.tic("contract_lp")

        cur_box = self.init_bounds

        new_bounds_list = star.input_box_bounds(cur_box, count_lps=True)

        for dim, lb, ub in new_bounds_list:
            self.update_init_bounds(dim, (lb, ub))

        Timers.toc("contract_lp")

        return new_bounds_list
Пример #28
0
    def exists_idle_worker(self):
        'do idle workers (with no work) exist?'

        Timers.tic('exists_idle_worker')

        rv = False

        # checking qsize here slows things down

        for i, size in enumerate(self.shared.heap_sizes):
            if i != self.priv.worker_index:
                if size == 0:
                    rv = True
                    break

        Timers.toc('exists_idle_worker')

        return rv
Пример #29
0
    def contract_from_violation(self, violation_stars):
        '''contract from a list of violation stars

        returns True if contracted
        '''

        Timers.tic('contract_from_violation')

        max_dim = self.star.a_mat.shape[1]

        #self_box = self.star.input_box_bounds(None)

        zono_box = self.prefilter.zono.init_bounds

        #        print(f"prefilter box bounds: {}")
        print(f"\nnum violation stars: {len(violation_stars)}")

        vio_box = [[np.inf, -np.inf] for _ in range(max_dim)]

        for star in violation_stars:
            single_vio_box = star.input_box_bounds(None, max_dim=max_dim)

            for dim, lb, ub in single_vio_box:
                vio_box[dim][0] = min(vio_box[dim][0], lb)
                vio_box[dim][1] = max(vio_box[dim][1], ub)

        tol = 1e-7

        contracted = False

        for i, (lb, ub) in enumerate(vio_box):
            if lb > zono_box[i][0] + tol or ub < zono_box[i][1] - tol:
                print(f"contracting {i} from {zono_box[i]} to {lb, ub}")

                self.prefilter.zono.update_init_bounds(i, (lb, ub))
                self.star.lpi.set_col_bounds(i, lb, ub)
                contracted = True

        Timers.toc('contract_from_violation')

        if contracted:
            self.prefilter.domain_shrank(self.star)

        return contracted
Пример #30
0
    def __init__(self, other_lpi=None):
        'initialize the lp instance'

        self.lp = glpk.glp_create_prob()  # pylint: disable=invalid-name

        if other_lpi is None:
            # internal bookkeeping
            self.names = []  # column names

            # setup lp params
        else:
            # initialize from other lpi
            self.names = other_lpi.names.copy()

            Timers.tic('glp_copy_prob')
            glpk.glp_copy_prob(self.lp, other_lpi.lp, glpk.GLP_OFF)
            Timers.toc('glp_copy_prob')

        self.freeze_attrs()