def price_scale_free(m, c=None, gamma=1, nodes=0, weighted=True, directed=True, seed_graph=None, multigraph=False, name="PriceSF", shape=None, positions=None, population=None, from_graph=None, **kwargs): """ @todo make the algorithm. Generate a Price graph model (Barabasi-Albert if undirected). Parameters ---------- m : int The number of edges each new node will make. c : double Constant added to the probability of a vertex receiving an edge. gamma : double Preferential attachment power. nodes : int, optional (default: None) The number of nodes in the graph. weighted : bool, optional (default: True) @todo Whether the graph edges have weights. directed : bool, optional (default: True) Whether the graph is directed or not. multigraph : bool, optional (default: False) Whether the graph can contain multiple edges between two nodes. name : string, optional (default: "ER") Name of the created graph. shape : :class:`~nngt.geometry.Shape`, optional (default: None) Shape of the neurons' environment positions : :class:`numpy.ndarray`, optional (default: None) A 2D or 3D array containing the positions of the neurons in space. population : :class:`~nngt.NeuralPop`, optional (default: None) Population of neurons defining their biological properties (to create a :class:`~nngt.Network`). from_graph : :class:`~nngt.Graph` or subclass, optional (default: None) Initial graph whose nodes are to be connected. Returns ------- graph_price : :class:`~nngt.Graph` or subclass. Note ---- `nodes` is required unless `from_graph` or `population` is provided. """ nodes = ( ( population.size if population is not None else nodes ) if from_graph is None else from_graph.node_nb() ) #~ c = c if c is not None else 0 if directed else 1 g = price_network(nodes, m, c, gamma, directed, seed_graph) graph_obj_price = nngt.Graph.from_library(g) graph_price = nngt.Graph.from_library(g) _set_options(graph_price, population, shape, positions) graph_price._graph_type = "price_scale_free" return graph_price
def all_to_all(nodes=0, weighted=True, directed=True, multigraph=False, name="AlltoAll", shape=None, positions=None, population=None, **kwargs): """ Generate a graph where all nodes are connected. .. versionadded:: 1.0 Parameters ---------- nodes : int, optional (default: None) The number of nodes in the graph. reciprocity : double, optional (default: -1 to let it free) Fraction of edges that are bidirectional (only for directed graphs -- undirected graphs have a reciprocity of 1 by definition) weighted : bool, optional (default: True) Whether the graph edges have weights. directed : bool, optional (default: True) Whether the graph is directed or not. multigraph : bool, optional (default: False) Whether the graph can contain multiple edges between two nodes. name : string, optional (default: "ER") Name of the created graph. shape : :class:`~nngt.geometry.Shape`, optional (default: None) Shape of the neurons' environment. positions : :class:`numpy.ndarray`, optional (default: None) A 2D or 3D array containing the positions of the neurons in space. population : :class:`~nngt.NeuralPop`, optional (default: None) Population of neurons defining their biological properties (to create a :class:`~nngt.Network`). Note ---- `nodes` is required unless `population` is provided. Returns ------- graph_all : :class:`~nngt.Graph`, or subclass A new generated graph. """ nodes = nodes if population is None else population.size matrix = np.ones((nodes, nodes)) graph_all = nngt.Graph(name=name, nodes=nodes, directed=directed, **kwargs) _set_options(graph_all, population, shape, positions) # add edges if nodes > 1: ids = np.arange(nodes, dtype=np.uint) edges = _all_to_all(ids, ids, directed, multigraph) graph_all.new_edges(ia_edges) graph_all._graph_type = "all_to_all" return graph_all
def distance_rule(scale, rule="exp", shape=None, neuron_density=1000., max_proba=-1., nodes=0, density=-1., edges=-1, avg_deg=-1., unit='um', weighted=True, directed=True, multigraph=False, name="DR", positions=None, population=None, from_graph=None, **kwargs): """ Create a graph using a 2D distance rule to create the connection between neurons. Available rules are linear and exponential. Parameters ---------- scale : float Characteristic scale for the distance rule. E.g for linear distance- rule, :math:`P(i,j) \propto (1-d_{ij}/scale))`, whereas for the exponential distance-rule, :math:`P(i,j) \propto e^{-d_{ij}/scale}`. rule : string, optional (default: 'exp') Rule that will be apply to draw the connections between neurons. Choose among "exp" (exponential), "gaussian" (Gaussian), or "lin" (linear). shape : :class:`~nngt.geometry.Shape`, optional (default: None) Shape of the neurons' environment. If not specified, a square will be created with the appropriate dimensions for the number of neurons and the neuron spatial density. neuron_density : float, optional (default: 1000.) Density of neurons in space (:math:`neurons \cdot mm^{-2}`). nodes : int, optional (default: None) The number of nodes in the graph. p : float, optional Normalization factor for the distance rule; it is equal to the probability of connection when testing a node at zero distance. density: double, optional Structural density given by `edges` / (`nodes` * `nodes`). edges : int, optional The number of edges between the nodes avg_deg : double, optional Average degree of the neurons given by `edges` / `nodes`. unit : string (default: 'um') Unit for the length `scale` among 'um' (:math:`\mu m`), 'mm', 'cm', 'dm', 'm'. weighted : bool, optional (default: True) @todo Whether the graph edges have weights. directed : bool, optional (default: True) Whether the graph is directed or not. multigraph : bool, optional (default: False) Whether the graph can contain multiple edges between two nodes. name : string, optional (default: "DR") Name of the created graph. positions : :class:`numpy.ndarray`, optional (default: None) A 2D (N, 2) or 3D (N, 3) shaped array containing the positions of the neurons in space. population : :class:`~nngt.NeuralPop`, optional (default: None) Population of neurons defining their biological properties (to create a :class:`~nngt.Network`). from_graph : :class:`Graph` or subclass, optional (default: None) Initial graph whose nodes are to be connected. """ distance = [] # convert neuronal density in (mu m)^2 neuron_density *= conversion_magnitude(unit, 'mm')**2 # set node number and library graph graph_dr = from_graph if graph_dr is not None: nodes = graph_dr.node_nb() graph_dr.clear_all_edges() else: nodes = population.size if population is not None else nodes # check shape if shape is None: h = w = np.sqrt(float(nodes) / neuron_density) shape = nngt.geometry.Shape.rectangle(h, w) if graph_dr is None: graph_dr = nngt.SpatialGraph(name=name, nodes=nodes, directed=directed, shape=shape, positions=positions, **kwargs) else: Graph.make_spatial(graph_dr, shape, positions=positions) positions = np.array(graph_dr.get_positions().T, dtype=np.float32) # set options (graph has already been made spatial) _set_options(graph_dr, population, None, None) # add edges ia_edges = None conversion_factor = conversion_magnitude(shape.unit, unit) if unit != shape.unit: positions = np.multiply(conversion_factor, positions, dtype=np.float32) if nodes > 1: ids = np.arange(0, nodes, dtype=np.uint) ia_edges = _distance_rule(ids, ids, density, edges, avg_deg, scale, rule, max_proba, shape, positions, directed, multigraph, distance=distance, **kwargs) attr = {'distance': distance} # check for None if MPI if ia_edges is not None: graph_dr.new_edges(ia_edges, attributes=attr) graph_dr._graph_type = "{}_distance_rule".format(rule) return graph_dr
def newman_watts(coord_nb, proba_shortcut, nodes=0, weighted=True, directed=True, multigraph=False, name="NW", shape=None, positions=None, population=None, from_graph=None, **kwargs): """ Generate a small-world graph using the Newman-Watts algorithm. @todo generate the edges of a circular graph to not replace the graph of the `from_graph` and implement chosen reciprocity. Parameters ---------- coord_nb : int The number of neighbours for each node on the initial topological lattice. proba_shortcut : double Probability of adding a new random (shortcut) edge for each existing edge on the initial lattice. nodes : int, optional (default: None) The number of nodes in the graph. density: double, optional (default: 0.1) Structural density given by `edges` / (`nodes`*`nodes`). edges : int (optional) The number of edges between the nodes avg_deg : double, optional Average degree of the neurons given by `edges` / `nodes`. weighted : bool, optional (default: True) @todo Whether the graph edges have weights. directed : bool, optional (default: True) Whether the graph is directed or not. multigraph : bool, optional (default: False) Whether the graph can contain multiple edges between two nodes. name : string, optional (default: "ER") Name of the created graph. shape : :class:`~nngt.geometry.Shape`, optional (default: None) Shape of the neurons' environment positions : :class:`numpy.ndarray`, optional (default: None) A 2D or 3D array containing the positions of the neurons in space. population : :class:`~nngt.NeuralPop`, optional (default: None) Population of neurons defining their biological properties (to create a :class:`~nngt.Network`). from_graph : :class:`Graph` or subclass, optional (default: None) Initial graph whose nodes are to be connected. Returns ------- graph_nw : :class:`~nngt.Graph` or subclass Note ---- `nodes` is required unless `from_graph` or `population` is provided. """ # set node number and library graph graph_nw = from_graph if graph_nw is not None: nodes = graph_nw.node_nb() graph_nw.clear_all_edges() else: nodes = population.size if population is not None else nodes graph_nw = nngt.Graph(name=name, nodes=nodes, directed=directed, **kwargs) _set_options(graph_nw, population, shape, positions) # add edges ia_edges = None if nodes > 1: ids = range(nodes) ia_edges = _newman_watts(ids, ids, coord_nb, proba_shortcut, directed, multigraph) graph_nw.new_edges(ia_edges) graph_nw._graph_type = "newman_watts" return graph_nw
def random_scale_free(in_exp, out_exp, nodes=0, density=-1, edges=-1, avg_deg=-1, reciprocity=0., weighted=True, directed=True, multigraph=False, name="RandomSF", shape=None, positions=None, population=None, from_graph=None, **kwargs): """ Generate a free-scale graph of given reciprocity and otherwise devoid of correlations. Parameters ---------- in_exp : float Absolute value of the in-degree exponent :math:`\gamma_i`, such that :math:`p(k_i) \propto k_i^{-\gamma_i}` out_exp : float Absolute value of the out-degree exponent :math:`\gamma_o`, such that :math:`p(k_o) \propto k_o^{-\gamma_o}` nodes : int, optional (default: None) The number of nodes in the graph. density: double, optional (default: 0.1) Structural density given by `edges / (nodes*nodes)`. edges : int (optional) The number of edges between the nodes avg_deg : double, optional Average degree of the neurons given by `edges / nodes`. weighted : bool, optional (default: True) @todo Whether the graph edges have weights. directed : bool, optional (default: True) Whether the graph is directed or not. multigraph : bool, optional (default: False) Whether the graph can contain multiple edges between two nodes. can contain multiple edges between two name : string, optional (default: "ER") Name of the created graph. shape : :class:`~nngt.geometry.Shape`, optional (default: None) Shape of the neurons' environment. positions : :class:`numpy.ndarray`, optional (default: None) A 2D or 3D array containing the positions of the neurons in space. population : :class:`~nngt.NeuralPop`, optional (default: None) Population of neurons defining their biological properties (to create a :class:`~nngt.Network`) from_graph : :class:`Graph` or subclass, optional (default: None) Initial graph whose nodes are to be connected. Returns ------- graph_fs : :class:`~nngt.Graph` Note ---- As reciprocity increases, requested values of `in_exp` and `out_exp` will be less and less respected as the distribution will converge to a common exponent :math:`\gamma = (\gamma_i + \gamma_o) / 2`. Parameter `nodes` is required unless `from_graph` or `population` is provided. """ # set node number and library graph graph_rsf = from_graph if graph_rsf is not None: nodes = graph_rsf.node_nb() graph_rsf.clear_all_edges() else: nodes = population.size if population is not None else nodes graph_rsf = nngt.Graph(name=name, nodes=nodes, directed=directed, **kwargs) _set_options(graph_rsf, population, shape, positions) # add edges ia_edges = None if nodes > 1: ids = range(nodes) ia_edges = _random_scale_free(ids, ids, in_exp, out_exp, density, edges, avg_deg, reciprocity, directed, multigraph) graph_rsf.new_edges(ia_edges) graph_rsf._graph_type = "random_scale_free" return graph_rsf
def erdos_renyi(density=-1., nodes=0, edges=-1, avg_deg=-1., reciprocity=-1., weighted=True, directed=True, multigraph=False, name="ER", shape=None, positions=None, population=None, from_graph=None, **kwargs): """ Generate a random graph as defined by Erdos and Renyi but with a reciprocity that can be chosen. Parameters ---------- density : double, optional (default: -1.) Structural density given by `edges / nodes`:math:`^2`. It is also the probability for each possible edge in the graph to exist. nodes : int, optional (default: None) The number of nodes in the graph. edges : int (optional) The number of edges between the nodes avg_deg : double, optional Average degree of the neurons given by `edges / nodes`. reciprocity : double, optional (default: -1 to let it free) Fraction of edges that are bidirectional (only for directed graphs -- undirected graphs have a reciprocity of 1 by definition) weighted : bool, optional (default: True) Whether the graph edges have weights. directed : bool, optional (default: True) Whether the graph is directed or not. multigraph : bool, optional (default: False) Whether the graph can contain multiple edges between two nodes. name : string, optional (default: "ER") Name of the created graph. shape : :class:`~nngt.geometry.Shape`, optional (default: None) Shape of the neurons' environment. positions : :class:`numpy.ndarray`, optional (default: None) A 2D or 3D array containing the positions of the neurons in space. population : :class:`~nngt.NeuralPop`, optional (default: None) Population of neurons defining their biological properties (to create a :class:`~nngt.Network`). from_graph : :class:`Graph` or subclass, optional (default: None) Initial graph whose nodes are to be connected. Returns ------- graph_er : :class:`~nngt.Graph`, or subclass A new generated graph or the modified `from_graph`. Note ---- `nodes` is required unless `from_graph` or `population` is provided. If an `from_graph` is provided, all preexistant edges in the object will be deleted before the new connectivity is implemented. """ # set node number and library graph graph_er = from_graph if graph_er is not None: nodes = graph_er.node_nb() graph_er.clear_all_edges() else: nodes = population.size if population is not None else nodes graph_er = nngt.Graph(name=name, nodes=nodes, directed=directed, **kwargs) _set_options(graph_er, population, shape, positions) # add edges ia_edges = None if nodes > 1: ids = range(nodes) ia_edges = _erdos_renyi(ids, ids, density, edges, avg_deg, reciprocity, directed, multigraph) graph_er.new_edges(ia_edges) graph_er._graph_type = "erdos_renyi" return graph_er
def gaussian_degree(avg, std, degree_type='in', nodes=0, reciprocity=-1., weighted=True, directed=True, multigraph=False, name="GD", shape=None, positions=None, population=None, from_graph=None, **kwargs): """ Generate a random graph with constant in- or out-degree. @todo: adapt it for undirected graphs! Parameters ---------- avg : float The value of the average degree. std : float The standard deviation of the Gaussian distribution. degree_type : str, optional (default: 'in') The type of the fixed degree, among 'in', 'out' or 'total' @todo: Implement 'total' degree nodes : int, optional (default: None) The number of nodes in the graph. reciprocity : double, optional (default: -1 to let it free) @todo: not implemented yet. Fraction of edges that are bidirectional (only for directed graphs -- undirected graphs have a reciprocity of 1 by definition) weighted : bool, optional (default: True) Whether the graph edges have weights. directed : bool, optional (default: True) @todo: only for directed graphs for now. Whether the graph is directed or not. multigraph : bool, optional (default: False) Whether the graph can contain multiple edges between two nodes. name : string, optional (default: "ER") Name of the created graph. shape : :class:`~nngt.geometry.Shape`, optional (default: None) Shape of the neurons' environment. positions : :class:`numpy.ndarray`, optional (default: None) A 2D or 3D array containing the positions of the neurons in space. population : :class:`~nngt.NeuralPop`, optional (default: None) Population of neurons defining their biological properties (to create a :class:`~nngt.Network`). from_graph : :class:`Graph` or subclass, optional (default: None) Initial graph whose nodes are to be connected. Returns ------- graph_gd : :class:`~nngt.Graph`, or subclass A new generated graph or the modified `from_graph`. Note ---- `nodes` is required unless `from_graph` or `population` is provided. If an `from_graph` is provided, all preexistant edges in the object will be deleted before the new connectivity is implemented. """ # set node number and library graph graph_gd = from_graph if graph_gd is not None: nodes = graph_gd.node_nb() graph_gd.clear_all_edges() else: nodes = population.size if population is not None else nodes graph_gd = nngt.Graph(name=name, nodes=nodes, directed=directed, **kwargs) _set_options(graph_gd, population, shape, positions) # add edges ia_edges = None if nodes > 1: ids = np.arange(nodes, dtype=np.uint) ia_edges = _gaussian_degree(ids, ids, avg, std, degree_type, reciprocity, directed, multigraph) # check for None if MPI if ia_edges is not None: graph_gd.new_edges(ia_edges) graph_gd._graph_type = "gaussian_{}_degree".format(degree_type) return graph_gd