Пример #1
0
def _main(port):
    base_model = ShuffleNetV2(32)
    base_predictor = 'cortexA76cpu_tflite21'
    transf = [
        transforms.RandomCrop(32, padding=4),
        transforms.RandomHorizontalFlip()
    ]
    normalize = [
        transforms.ToTensor(),
        transforms.Normalize([0.49139968, 0.48215827, 0.44653124], [0.24703233, 0.24348505, 0.26158768])
    ]
    train_dataset = serialize(CIFAR10, 'data', train=True, download=True, transform=transforms.Compose(transf + normalize))
    test_dataset = serialize(CIFAR10, 'data', train=False, transform=transforms.Compose(normalize))

    trainer = pl.Classification(train_dataloader=pl.DataLoader(train_dataset, batch_size=64),
                                val_dataloaders=pl.DataLoader(test_dataset, batch_size=64),
                                max_epochs=2, gpus=1)

    simple_strategy = strategy.Random(model_filter=LatencyFilter(threshold=100, predictor=base_predictor))

    exp = RetiariiExperiment(base_model, trainer, strategy=simple_strategy)

    exp_config = RetiariiExeConfig('local')
    exp_config.trial_concurrency = 2
    exp_config.max_trial_number = 2
    exp_config.trial_gpu_number = 1
    exp_config.training_service.use_active_gpu = False
    exp_config.execution_engine = 'base'
    exp_config.dummy_input = [1, 3, 32, 32]

    exp.run(exp_config, port)

    print('Exported models:')
    for model in exp.export_top_models(formatter='dict'):
        print(model)
Пример #2
0
def _main(port):
    base_model = ShuffleNetV2OneShot(32)
    base_predictor = 'cortexA76cpu_tflite21'
    transf = [
        transforms.RandomCrop(32, padding=4),
        transforms.RandomHorizontalFlip()
    ]
    normalize = [
        transforms.ToTensor(),
        transforms.Normalize([0.49139968, 0.48215827, 0.44653124],
                             [0.24703233, 0.24348505, 0.26158768])
    ]
    # FIXME
    # CIFAR10 is used here temporarily.
    # Actually we should load weight from supernet and evaluate on imagenet.
    train_dataset = serialize(CIFAR10,
                              'data',
                              train=True,
                              download=True,
                              transform=transforms.Compose(transf + normalize))
    test_dataset = serialize(CIFAR10,
                             'data',
                             train=False,
                             transform=transforms.Compose(normalize))

    trainer = pl.Classification(train_dataloader=pl.DataLoader(train_dataset,
                                                               batch_size=64),
                                val_dataloaders=pl.DataLoader(test_dataset,
                                                              batch_size=64),
                                max_epochs=2,
                                gpus=1)

    simple_strategy = strategy.RegularizedEvolution(model_filter=LatencyFilter(
        threshold=100, predictor=base_predictor),
                                                    sample_size=1,
                                                    population_size=2,
                                                    cycles=2)
    exp = RetiariiExperiment(base_model, trainer, strategy=simple_strategy)

    exp_config = RetiariiExeConfig('local')
    exp_config.trial_concurrency = 2
    # exp_config.max_trial_number = 2
    exp_config.trial_gpu_number = 1
    exp_config.training_service.use_active_gpu = False
    exp_config.execution_engine = 'base'
    exp_config.dummy_input = [1, 3, 32, 32]

    exp.run(exp_config, port)

    print('Exported models:')
    for i, model in enumerate(exp.export_top_models(formatter='dict')):
        print(model)
        with open(f'architecture_final_{i}.json', 'w') as f:
            json.dump(get_archchoice_by_model(model), f, indent=4)
Пример #3
0
def _main():
    parser = argparse.ArgumentParser("SPOS Evolutional Search")
    parser.add_argument("--port", type=int, default=8084)
    parser.add_argument("--imagenet-dir", type=str, default="./data/imagenet")
    parser.add_argument("--checkpoint",
                        type=str,
                        default="./data/checkpoint-150000.pth.tar")
    parser.add_argument(
        "--spos-preprocessing",
        action="store_true",
        default=False,
        help="When true, image values will range from 0 to 255 and use BGR "
        "(as in original repo).")
    parser.add_argument("--seed", type=int, default=42)
    parser.add_argument("--workers", type=int, default=6)
    parser.add_argument("--train-batch-size", type=int, default=128)
    parser.add_argument("--train-iters", type=int, default=200)
    parser.add_argument("--test-batch-size", type=int, default=512)
    parser.add_argument("--log-frequency", type=int, default=10)
    parser.add_argument("--label-smoothing", type=float, default=0.1)
    parser.add_argument("--evolution-sample-size", type=int, default=10)
    parser.add_argument("--evolution-population-size", type=int, default=50)
    parser.add_argument("--evolution-cycles", type=int, default=10)
    parser.add_argument(
        "--latency-filter",
        type=str,
        default=None,
        help="Apply latency filter by calling the name of the applied hardware."
    )
    parser.add_argument("--latency-threshold", type=float, default=100)

    args = parser.parse_args()

    # use a fixed set of image will improve the performance
    torch.manual_seed(args.seed)
    torch.cuda.manual_seed_all(args.seed)
    np.random.seed(args.seed)
    random.seed(args.seed)
    torch.backends.cudnn.deterministic = True

    assert torch.cuda.is_available()

    base_model = ShuffleNetV2OneShot()
    criterion = CrossEntropyLabelSmooth(1000, args.label_smoothing)

    if args.latency_filter:
        latency_filter = LatencyFilter(threshold=args.latency_threshold,
                                       predictor=args.latency_filter)
    else:
        latency_filter = None

    evaluator = FunctionalEvaluator(evaluate_acc,
                                    criterion=criterion,
                                    args=args)
    evolution_strategy = strategy.RegularizedEvolution(
        model_filter=latency_filter,
        sample_size=args.evolution_sample_size,
        population_size=args.evolution_population_size,
        cycles=args.evolution_cycles)
    exp = RetiariiExperiment(base_model,
                             evaluator,
                             strategy=evolution_strategy)

    exp_config = RetiariiExeConfig('local')
    exp_config.trial_concurrency = 2
    exp_config.trial_gpu_number = 1
    exp_config.max_trial_number = args.evolution_cycles
    exp_config.training_service.use_active_gpu = False
    exp_config.execution_engine = 'base'
    exp_config.dummy_input = [1, 3, 224, 224]

    exp.run(exp_config, args.port)

    print('Exported models:')
    for i, model in enumerate(exp.export_top_models(formatter='dict')):
        print(model)
        with open(f'architecture_final_{i}.json', 'w') as f:
            json.dump(get_archchoice_by_model(model), f, indent=4)