Пример #1
0
            sys.exit(0)

        if args.submit == 'nni':
            builder.generate_code()
            tunor = builder.find_role('hyper-tunor', unique=True)
            commands = [
                'nnictl', 'create', '--config',
                tunor.store_nni_config()
            ]
            builder.node.submit_job(commands)
            sys.exit(0)

        if args.nni_trial:
            import nni
            builder.stages[0].update_trial_id('trial-' + random_string(size=8))
            param = nni.get_parameters()
            print(param)
            builder.update_config(param)
            result = builder.build_and_train()
            # nni.report_final_result(0 if result is None else result['loss'])
            sys.exit(0)

        # build
        if args.train:
            builder = ModelPipeline(config, from_fe=args.front_end)
            builder.build_and_train()
            builder.notify('Succeed', 'Trainig has been done')
            sys.exit(0)
    except Exception as e:
        builder.notify(
            'Failed',
Пример #2
0
            model.weights = PARAMS['knr_weights']
    except Exception as exception:
        LOG.exception(exception)
        raise
    return model


def run(X_train, X_test, y_train, y_test, PARAMS):
    '''Train model and predict result'''
    model.fit(X_train, y_train)
    predict_y = model.predict(X_test)
    score = r2_score(y_test, predict_y)
    LOG.debug('r2 score: %s' % score)
    nni.report_final_result(score)

if __name__ == '__main__':
    X_train, X_test, y_train, y_test = load_data()

    try:
        # get parameters from tuner
        RECEIVED_PARAMS = nni.get_parameters()
        LOG.debug(RECEIVED_PARAMS)
        PARAMS = get_default_parameters()
        PARAMS.update(RECEIVED_PARAMS)
        LOG.debug(PARAMS)
        model = get_model(PARAMS)
        run(X_train, X_test, y_train, y_test, model)
    except Exception as exception:
        LOG.exception(exception)
        raise
Пример #3
0
        save_path = None
        max_epoch = args.max_epoch

        cfg = GAGConfig()
        cfg.batch_size = args.batch_size
        cfg.learning_rate = float(args.learning_rate)
        cfg.dropout = args.dropout_rate
        cfg.rnn_units = args.rnn_units
        cfg.labelsmoothing = args.labelsmoothing
        cfg.num_heads = args.num_heads
        timer = Timer()

        qp_pairs, dev_qp_pairs = load_data()
        logger.debug('Init finish.')

        original_params = nni.get_parameters()
        '''
        with open('data.json') as f:
            original_params = json.load(f)
        '''
        try:
            graph = graph.graph_loads(original_params)
        except Exception:
            logger.debug('Can\'t load graph.')
        train_loss, best_acc = train_with_graph(graph, qp_pairs, dev_qp_pairs)

        logger.debug('Send best acc: %s', str(best_acc))
        nni.report_final_result(best_acc)
        logger.debug('Send final result done')
    except:
        logger.exception('Catch exception in trial.py.')
Пример #4
0
def generate_default_params():
    '''
    Generate default parameters for mnist network.
    '''
    params = {
        'data_dir': '/tmp/tensorflow/mnist/input_data',
        'dropout_rate': 0.5,
        'channel_1_num': 32,
        'channel_2_num': 64,
        'conv_size': 5,
        'pool_size': 2,
        'hidden_size': 1024,
        'learning_rate': 1e-4,
        'batch_num': 200}
    return params


if __name__ == '__main__':
    try:
        # get parameters form tuner
        RCV_PARAMS = nni.get_parameters()
        logger.debug(RCV_PARAMS)
        # run
        params = generate_default_params()
        params.update(RCV_PARAMS)
        main(params)
    except Exception as exception:
        logger.exception(exception)
        raise
Пример #5
0
import nni

params = nni.get_parameters()
print('params:', params)
x = params['x']

nni.report_final_result(x)
Пример #6
0
        print('Saving..')
        state = {
            'net': net.state_dict(),
            'acc': acc,
            'epoch': epoch,
        }
        if not os.path.isdir('checkpoint'):
            os.mkdir('checkpoint')
        torch.save(state, './checkpoint/ckpt.t7')
        best_acc = acc
    return acc, best_acc


if __name__ == '__main__':
    try:
        RCV_CONFIG = nni.get_parameters()
        #RCV_CONFIG = {'lr': 0.1, 'optimizer': 'Adam', 'model':'senet18'}
        _logger.debug(RCV_CONFIG)

        prepare(RCV_CONFIG)
        acc = 0.0
        best_acc = 0.0
        for epoch in range(start_epoch, start_epoch+200):
            train(epoch)
            acc, best_acc = test(epoch)
            nni.report_intermediate_result(acc)

        nni.report_final_result(best_acc)
    except Exception as exception:
        _logger.exception(exception)
        raise
Пример #7
0
    return params


def parse_init_json(data):
    params = {}
    for key in data:
        value = data[key]
        if value == 'Empty':
            params[key] = ['Empty']
        else:
            params[key] = [value[0], value[1]['_value'], value[1]['_value']]
    return params


if __name__ == '__main__':
    try:
        # get parameters form tuner
        data = nni.get_parameters()
        logger.debug(data)

        RCV_PARAMS = parse_init_json(data)
        logger.debug(RCV_PARAMS)
        params = generate_defualt_params()
        params.update(RCV_PARAMS)
        print(RCV_PARAMS)

        main(params)
    except Exception as exception:
        logger.exception(exception)
        raise