def __init__(self, channel_1_num, channel_2_num, conv_size, hidden_size, pool_size, learning_rate, x_dim=784, y_dim=10): self.channel_1_num = channel_1_num self.channel_2_num = channel_2_num self.conv_size = nni.choice(2, 3, 5, 7, name='self.conv_size') self.hidden_size = nni.choice(124, 512, 1024, name='self.hidden_size') self.pool_size = pool_size self.learning_rate = nni.uniform(0.0001, 0.1, name='self.learning_rate') self.x_dim = x_dim self.y_dim = y_dim self.images = tf.placeholder(tf.float32, [None, self.x_dim], name='input_x') self.labels = tf.placeholder(tf.float32, [None, self.y_dim], name='input_y') self.keep_prob = tf.placeholder(tf.float32, name='keep_prob') self.train_step = None self.accuracy = None
def test_default_name(self): val = nni.uniform(1, 10) # NOTE: assign this line number to lineno1 self.assertEqual(val, '5')