# im = 255 - imread('data/images/ali-cropped.jpg', mode='I') heatmap = utils.image_to_square_greyscale_array(im) seed = 1337 np.random.seed(seed) train_size = 64_000 * 2 # data_points = np.random.normal(size=(train_size, 3)) # # l2 normalize the points # data_points /= np.linalg.norm(data_points, axis=1, ord=2).reshape((-1, 1)) input_noise_fn = lambda size: np.random.uniform(size=(size, 100)) # NOQA data_points = input_noise_fn(train_size) targets = noise_as_targets.sample_from_heatmap( heatmap, train_size, sampling_method='even', ) # batching_function = batching_functions.progressive_local_search(targets) batching_function = batching_functions.random_batching(targets) config = { 'dataset_fn': lambda: (data_points, targets), 'model_fn': lambda input_t, output_size: models.multi_layer_mlp( input_t, output_size, hidden_dims=[512, 512], activation_fn=tf.tanh), 'batch_size': 128, 'batching_fn':
seed = 1337 np.random.seed(seed) dataset = input_data.read_data_sets("data/MNIST/", one_hot=False, reshape=False) data_points = np.concatenate( [x.images for x in [dataset.train, dataset.validation, dataset.test]]) batch_size = 128 data_points = data_points.reshape( (len(data_points), -1))[:-(len(data_points) % batch_size)] np.random.shuffle(data_points) targets = noise_as_targets.sample_from_heatmap( heatmap, len(data_points), sampling_method='even', ) batching_function = batching_functions.random_batching(targets) # batching_function = batching_functions.progressive_local_search(targets) config = { 'dataset_fn': lambda: (data_points, targets), 'model_fn': lambda input_t, output_size: models.multi_layer_mlp( input_t, output_size, hidden_dims=[128, 128 ], activation_fn=tf.sigmoid), 'batch_size': batch_size,