import os from glob import glob from _paths import nomeroff_net_dir from nomeroff_net import pipeline from nomeroff_net.tools import unzip if __name__ == '__main__': multiline_number_plate_detection_and_reading = pipeline( "multiline_number_plate_detection_and_reading", image_loader="opencv") result = multiline_number_plate_detection_and_reading( glob( os.path.join(nomeroff_net_dir, './data/examples/multiline_images/*'))) (images, images_bboxs, images_points, images_zones, region_ids, region_names, count_lines, confidences, texts) = unzip(result) print(texts)
""" python3 examples/py/inference/get_started-demo2.py """ import os from _paths import nomeroff_net_dir from nomeroff_net import pipeline from nomeroff_net.tools import unzip if __name__ == '__main__': number_plate_detection_and_reading = pipeline("number_plate_detection_and_reading_v2", image_loader="opencv") (images, images_bboxs, images_points, images_zones, region_ids, region_names, count_lines, confidences, texts) = number_plate_detection_and_reading([ os.path.join(nomeroff_net_dir, './data/examples/oneline_images/example1.jpeg'), ]) # (['AC4921CB'], ['RP70012', 'JJF509']) print(texts)
import warnings import os from glob import glob from _paths import nomeroff_net_dir from nomeroff_net import pipeline warnings.filterwarnings("ignore") os.environ["CUDA_VISIBLE_DEVICES"] = "0" if __name__ == '__main__': number_plate_detection_and_reading = pipeline( "number_plate_detection_and_reading_runtime", image_loader="opencv" # Try 'turbo' for faster performance. ) num_run = 1 batch_size = 1 num_workers = 1 images = glob( os.path.join(nomeroff_net_dir, "./data/examples/benchmark_oneline_np_images/1.jpeg")) number_plate_detection_and_reading.clear_stat() for i in range(num_run): print(f"pass {i}") outputs = number_plate_detection_and_reading(images, batch_size=batch_size, num_workers=num_workers)