Пример #1
0
def CF_QuanVal(X, Y, estimator, conformalSignificance):
    print("Starting quantitative conformal prediction validation")

    icp = AggregatedCp(IcpRegressor(RegressorNc(RegressorAdapter(estimator))),
                       BootstrapSampler())

    # icp = AggregatedCp(IcpRegressor(RegressorNc(RegressorAdapter(estimator),
    #                               AbsErrorErrFunc(), RegressorNormalizer(estimator,
    #                                RegressorAdapter(copy.copy(estimator)), AbsErrorErrFunc()))))
    # icp_cv = RegIcpCvHelper(icp)
    # scores = conformal_cross_val_score(icp_cv,
    #                          X,
    #                          Y,
    #                          iterations=5,
    #                          folds=5,
    #                          scoring_funcs=[reg_mean_errors, reg_median_size, reg_mean_size],
    #                          significance_levels=[0.05, 0.1, 0.2, conformalSignificance])

    icp.fit(X[:30], Y[:30])
    prediction = icp.predict(X[30:])
    prediction_sign = icp.predict(X[30:], significance=0.25)

    interval = prediction_sign[:, 0] - prediction_sign[:, 1]
    print(np.mean(interval))
    print(interval)
    print("\n")
    print(prediction)
    print(prediction_sign)
    return (icp)
Пример #2
0
    def build(self):
        '''Build a new qualitative GNB model with the X and Y numpy matrices'''

        # Make a copy of data matrices
        X = self.X.copy()
        Y = self.Y.copy()

        results = []
        results.append(('nobj', 'number of objects', self.nobj))
        results.append(('nvarx', 'number of predictor variables', self.nvarx))

        # Build estimator
        LOG.info('Building GaussianNB model')
        self.estimator = GaussianNB(**self.estimator_parameters)
        results.append(('model', 'model type', 'GNB qualitative'))

        self.estimator.fit(X, Y)

        if not self.param.getVal('conformal'):
            return True, results

        # If conformal, then create aggregated conformal classifier
        self.estimator_temp = copy(self.estimator)
        self.estimator = AggregatedCp(
            IcpClassifier(
                ClassifierNc(ClassifierAdapter(self.estimator_temp),
                             MarginErrFunc())), BootstrapSampler())

        # Fit estimator to the data
        self.estimator.fit(X, Y)
        results.append(('model', 'model type', 'conformal GNB qualitative'))

        return True, results
Пример #3
0
def CF_QualVal(X, Y, estimator, conformalSignificance):
    """ Qualitative conformal predictor validation"""

    print("Starting qualitative conformal prediction validation")
    icp = AggregatedCp(
        IcpClassifier(
            ClassifierNc(ClassifierAdapter(estimator), MarginErrFunc())),
        BootstrapSampler())
    Y = np.asarray(Y).reshape(-1, 1)
    loo = LeaveOneOut()
    predictions = []
    for train, test in loo.split(X):
        Xn = [X[i] for i in train]
        Yn = [Y[i] for i in train]
        Xn, mux = center(Xn)
        Xn, wgx = scale(Xn, True)
        Yn = np.asarray(Yn)
        Xout = X[test]
        Yout = Y[test[0]]
        icp.fit(Xn, Yn)
        predictions.append(icp.predict(Xout, significance=0.15))
    predictions = [(x[0]).tolist() for x in predictions]
    predictions = np.asarray(predictions)
    table = np.hstack((predictions, Y))
    print('Error rate: {}'.format(class_mean_errors(predictions, Y, 0.15)))
    print('Class one: ', class_one_c(predictions, Y, 0.15))
    return icp
Пример #4
0
    def CF_quantitative_validation(self):
        ''' Performs internal  validation for conformal quantitative models '''

        # Make a copy of original matrices.
        X = self.X.copy()
        Y = self.Y.copy()

        # Number of external validations for the aggregated conformal estimator.
        seeds = [5, 7, 35]
        # Interval means for each aggregated  conformal estimator (out of 3)
        interval_means = []
        # Accuracies for each aggregated conformal estimator (out of 3)
        accuracies = []
        results = []
        try:
            for i in range(len(seeds)):
                # Generate training a test sets
                X_train, X_test, Y_train, Y_test = train_test_split(
                    X, Y, test_size=0.25, random_state=i, shuffle=False)
                # Create the aggregated conformal regressor.
                conformal_pred = AggregatedCp(
                    IcpRegressor(RegressorNc(RegressorAdapter(
                        self.estimator))), BootstrapSampler())
                # Fit conformal regressor to the data
                conformal_pred.fit(X_train, Y_train)

                # Perform prediction on test set
                prediction = conformal_pred.predict(X_test,
                                                    self.conformalSignificance)
                # Add the n validation interval means
                interval_means.append(
                    np.mean(
                        np.abs(prediction[:, 0]) - np.abs(prediction[:, 1])))
                Y_test = Y_test.reshape(-1, 1)
                # Get boolean mask of instances within the applicability domain.
                inside_interval = ((prediction[:, 0].reshape(-1, 1) < Y_test) &
                                   (prediction[:, 1].reshape(-1, 1) > Y_test))
                # Compute the accuracy (number of instances within the AD).
                accuracy = np.sum(inside_interval) / len(Y_test)
                # Add validation result to the list of accuracies.
                accuracies.append(accuracy)
        except Exception as e:
            LOG.error(f'Quantitative conformal validation'
                      f' failed with exception: {e}')
            raise e

        # Compute mean interval_means and accuracy.
        interval_means = np.mean(interval_means)
        accuracies = np.mean(accuracies)
        # Cut into two decimals.
        self.conformal_accuracy = float("{0:.2f}".format(accuracies))
        self.conformal_mean_interval = float("{0:.2f}".format(interval_means))
        #Add quality metrics to results.

        results.append(('Conformal_mean_interval', 'Conformal mean interval',
                        self.conformal_mean_interval))
        results.append(('Conformal_accuracy', 'Conformal accuracy',
                        self.conformal_accuracy))

        return True, (results, )
Пример #5
0
    def build(self):
        if not self.quantitative:
            print("PLSR only applies to quantitative data")
            return False, "PLSR only applies to quantitative data"

        if self.failed:
            return False, "Error initiating model"

        X = self.X.copy()
        Y = self.Y.copy()


        results = []
        results.append(('nobj', 'number of objects', self.nobj))
        results.append(('nvarx', 'number of predictor variables', self.nvarx))

        if self.cv:
            self.cv = getCrossVal(self.cv, 46, self.n, self.p)

        if self.tune:
            if self.optimiz == 'auto':
                super(PLSR, self).optimize(X, Y, PLS_r(
                    **self.estimator_parameters), self.tune_parameters)
            elif self.optimiz == 'manual':
                self.optimize(X, Y, PLS_r(
                    **self.estimator_parameters), self.tune_parameters)

            results.append(
                ('model', 'model type', 'PLSR quantitative (optimized)'))

        else:
            print("Building  Quantitative PLSR")
            self.estimator = PLS_r(**self.estimator_parameters)
            results.append(('model', 'model type', 'PLSR quantitative'))

        if self.conformal:
            underlying_model = RegressorAdapter(self.estimator)
            normalizing_model = RegressorAdapter(
                KNeighborsRegressor(n_neighbors=1))
            normalizing_model = RegressorAdapter(self.estimator)
            normalizer = RegressorNormalizer(
                underlying_model, normalizing_model, AbsErrorErrFunc())
            nc = RegressorNc(underlying_model, AbsErrorErrFunc(), normalizer)
            self.conformal_pred = AggregatedCp(IcpRegressor(nc),
                                               BootstrapSampler())

            # self.conformal_pred = AggregatedCp(IcpRegressor(RegressorNc(RegressorAdapter(self.estimator))),
            #                                    BootstrapSampler())

            self.conformal_pred.fit(X, Y)
            # overrides non-conformal
            results.append(
                ('model', 'model type', 'conformal PLSR quantitative'))

        self.estimator.fit(X, Y)

        return True, results
Пример #6
0
    def test_acp_regression_tree(self):
        # -----------------------------------------------------------------------------
        # Experiment setup
        # -----------------------------------------------------------------------------
        data = load_diabetes()

        idx = np.random.permutation(data.target.size)
        train = idx[:int(2 * idx.size / 3)]
        test = idx[int(2 * idx.size / 3):]

        truth = data.target[test]
        columns = ["min", "max", "truth"]
        significance = 0.1

        # -----------------------------------------------------------------------------
        # Define models
        # -----------------------------------------------------------------------------

        models = {
            "ACP-RandomSubSampler":
            AggregatedCp(
                IcpRegressor(
                    RegressorNc(RegressorAdapter(DecisionTreeRegressor()))),
                RandomSubSampler(),
            ),
            "ACP-CrossSampler":
            AggregatedCp(
                IcpRegressor(
                    RegressorNc(RegressorAdapter(DecisionTreeRegressor()))),
                CrossSampler(),
            ),
            "ACP-BootstrapSampler":
            AggregatedCp(
                IcpRegressor(
                    RegressorNc(RegressorAdapter(DecisionTreeRegressor()))),
                BootstrapSampler(),
            ),
        }

        # -----------------------------------------------------------------------------
        # Train, predict and evaluate
        # -----------------------------------------------------------------------------
        for name, model in models.items():
            model.fit(data.data[train, :], data.target[train])
            prediction = model.predict(data.data[test, :])
            prediction_sign = model.predict(data.data[test, :],
                                            significance=significance)
            table = np.vstack((prediction_sign.T, truth)).T
            df = pd.DataFrame(table, columns=columns)
            print("\n{}".format(name))
            print("Error rate: {}".format(
                reg_mean_errors(prediction, truth, significance)))
            print(df)
Пример #7
0
def CF_QualCal(X, Y, estimator):
    """Qualitative conformal predictor calibration"""

    acp = AggregatedCp(
        IcpClassifier(
            ClassifierNc(ClassifierAdapter(estimator), MarginErrFunc())),
        BootstrapSampler())

    acp.fit(X, Y)

    # X_train, X_test, y_train, y_test = train_test_split( X, Y, test_size=0.30, random_state=42)
    # icp = IcpClassifier(ClassifierNc(ClassifierAdapter(estimator),
    # MarginErrFunc()))

    # icp.fit(X_train, y_train)
    # icp.calibrate(X_test, y_test)
    return acp
Пример #8
0
    def SelectLabeled(self, labeled_data_x, labeled_data_y, unlabeled_data_x):
        # just append train data to labeled data
        labeled_x = np.concatenate(
            (self.init_labeled_data_x, labeled_data_x
             )) if len(labeled_data_x) > 0 else self.init_labeled_data_x
        labeled_y = np.concatenate(
            (self.init_labeled_data_y, labeled_data_y
             )) if len(labeled_data_x) > 0 else self.init_labeled_data_y
        #

        # create model to predict with confidence and credibility
        model = ClassifierAdapter(
            DecisionTreeClassifier(random_state=config.random_state,
                                   min_samples_leaf=config.min_samples_leaf))
        model_acp = AggregatedCp(
            IcpClassifier(ClassifierNc(model), smoothing=True),
            BootstrapSampler())
        model_acp.fit(labeled_x, labeled_y)
        s = model_acp.predict(unlabeled_data_x)
        # print(s)
        #

        # selection method
        labeled_ind = [
            i for i, a in enumerate(s)
            if a.max() > config.confidence and 1 - a.min() > config.credibility
        ]
        unlabeled_ind = [
            i for i, a in enumerate(s)
            if a.max() < config.confidence or 1 - a.min() < config.credibility
        ]

        labeled_unlabeled_x, labeled_unlabeled_y, unlabeled_data_x = \
            np.take(unlabeled_data_x, labeled_ind, axis=0), np.take(s.argmax(axis=1), labeled_ind), np.take(
                unlabeled_data_x, unlabeled_ind, axis=0)
        #

        return labeled_unlabeled_x, labeled_unlabeled_y, unlabeled_data_x
Пример #9
0
    def build(self):
        '''Build a new qualitative GNB model with the X and Y numpy matrices'''
        if self.failed:
            return False, "Error initiating model"

        X = self.X.copy()
        Y = self.Y.copy()

        results = []
        results.append(('nobj', 'number of objects', self.nobj))
        results.append(('nvarx', 'number of predictor variables', self.nvarx))

        if self.cv:
            self.cv = getCrossVal(self.cv, 46, self.n, self.p)

        if self.quantitative:
            print("GNB only applies to qualitative data")
            return False, "GNB only applies to qualitative data"

        else:
            print("Building GaussianNB model")
            print(self.estimator_parameters)
            self.estimator = GaussianNB(**self.estimator_parameters)
            results.append(('model', 'model type', 'GNB qualitative'))

        if self.conformal:
            self.conformal_pred = AggregatedCp(
                IcpClassifier(
                    ClassifierNc(ClassifierAdapter(self.estimator),
                                 MarginErrFunc())), BootstrapSampler())
            self.conformal_pred.fit(X, Y)
            # overrides non-conformal
            results.append(
                ('model', 'model type', 'conformal GNB qualitative'))

        self.estimator.fit(X, Y)
        return True, results
Пример #10
0
    def build(self):
        '''Build a new SVM model with the X and Y numpy matrices'''

        # Make a copy of data matrices
        X = self.X.copy()
        Y = self.Y.copy()

        results = []
        results.append(('nobj', 'number of objects', self.nobj))
        results.append(('nvarx', 'number of predictor variables', self.nvarx))

        # If tune then call gridsearch to optimize the estimator
        if self.param.getVal('tune'):
            try:
                # Check type of model
                if self.param.getVal('quantitative'):
                    self.optimize(X, Y, svm.SVR(**self.estimator_parameters),
                                  self.tune_parameters)
                    results.append(('model', 'model type',
                                    'SVM quantitative (optimized)'))

                else:
                    self.optimize(X, Y, svm.SVC(**self.estimator_parameters),
                                  self.tune_parameters)
                    results.append(
                        ('model', 'model type', 'SVM qualitative (optimized)'))
                LOG.debug('SVM estimator optimized')
            except Exception as e:
                LOG.error(f'Exception optimizing SVM'
                          f'estimator with exception {e}')
        else:
            try:
                LOG.info("Building  SVM model")
                if self.param.getVal('quantitative'):
                    LOG.info("Building Quantitative SVM-R model")
                    self.estimator = svm.SVR(**self.estimator_parameters)
                    results.append(('model', 'model type', 'SVM quantitative'))
                else:
                    self.estimator = svm.SVC(**self.estimator_parameters)
                    results.append(('model', 'model type', 'SVM qualitative'))
            except Exception as e:
                LOG.error(f'Exception building SVM'
                          f'estimator with exception {e}')
        self.estimator.fit(X, Y)
        self.estimator_temp = copy(self.estimator)
        if self.param.getVal('conformal'):
            try:
                LOG.info("Building aggregated conformal SVM model")
                if self.param.getVal('quantitative'):
                    underlying_model = RegressorAdapter(self.estimator_temp)
                    # normalizing_model = RegressorAdapter(
                    # KNeighborsRegressor(n_neighbors=5))
                    normalizing_model = RegressorAdapter(self.estimator_temp)
                    normalizer = RegressorNormalizer(underlying_model,
                                                     normalizing_model,
                                                     AbsErrorErrFunc())
                    nc = RegressorNc(underlying_model, AbsErrorErrFunc(),
                                     normalizer)
                    # self.conformal_pred = AggregatedCp(IcpRegressor(
                    # RegressorNc(RegressorAdapter(self.estimator))),
                    #                                   BootstrapSampler())

                    self.estimator = AggregatedCp(IcpRegressor(nc),
                                                  BootstrapSampler())
                    self.estimator.fit(X, Y)
                    # overrides non-conformal
                    results.append(
                        ('model', 'model type', 'conformal SVM quantitative'))

                else:
                    self.estimator = AggregatedCp(
                        IcpClassifier(
                            ClassifierNc(
                                ClassifierAdapter(self.estimator_temp),
                                MarginErrFunc())), BootstrapSampler())
                    self.estimator.fit(X, Y)
                    # overrides non-conformal
                    results.append(
                        ('model', 'model type', 'conformal SVM qualitative'))
            except Exception as e:
                LOG.error(f'Exception building aggregated conformal SVM '
                          f'estimator with exception {e}')
        # Fit estimator to the data
        return True, results
Пример #11
0
# Define models
# -----------------------------------------------------------------------------

models = {
    'ACP-RandomSubSampler':
    AggregatedCp(
        IcpRegressor(RegressorNc(RegressorAdapter(DecisionTreeRegressor()))),
        RandomSubSampler()),
    'ACP-CrossSampler':
    AggregatedCp(
        IcpRegressor(RegressorNc(RegressorAdapter(DecisionTreeRegressor()))),
        CrossSampler()),
    'ACP-BootstrapSampler':
    AggregatedCp(
        IcpRegressor(RegressorNc(RegressorAdapter(DecisionTreeRegressor()))),
        BootstrapSampler())
}

# -----------------------------------------------------------------------------
# Train, predict and evaluate
# -----------------------------------------------------------------------------
for name, model in models.iteritems():
    model.fit(data.data[train, :], data.target[train])
    prediction = model.predict(data.data[test, :])
    prediction_sign = model.predict(data.data[test, :],
                                    significance=significance)
    table = np.vstack((prediction_sign.T, truth)).T
    df = pd.DataFrame(table, columns=columns)
    print('\n{}'.format(name))
    print('Error rate: {}'.format(
        reg_mean_errors(prediction, truth, significance)))
Пример #12
0
    def CF_qualitative_validation(self):
        ''' performs validation for conformal qualitative models '''

        # Make a copy of original matrices.
        X = self.X.copy()
        Y = self.Y.copy()

        # Total number of class 0 correct predictions.
        c0_correct_all = 0
        # Total number of class 0 incorrect predictions.
        c0_incorrect_all = 0
        # Total number of class 1 correct predictions.
        c1_correct_all = 0
        # Total number of class 1 incorrect predictions
        c1_incorrect_all = 0
        # Total number of instances out of the applicability domain.
        not_predicted_all = 0

        info = []

        kf = KFold(n_splits=5, shuffle=True, random_state=46)
        # Copy Y vector to use it as template to assign predictions
        Y_pred = copy.copy(Y).tolist()
        try:
            for train_index, test_index in kf.split(X):
                # Generate training and test sets
                X_train, X_test = X[train_index], X[test_index]
                Y_train, Y_test = Y[train_index], Y[test_index]
                # Create the aggregated conformal classifier.
                conformal_pred = AggregatedCp(
                    IcpClassifier(
                        ClassifierNc(ClassifierAdapter(self.estimator_temp),
                                     MarginErrFunc())), BootstrapSampler())
                # Fit the conformal classifier to the data
                conformal_pred.fit(X_train, Y_train)
                # Perform prediction on test set
                prediction = conformal_pred.predict(
                    X_test, self.param.getVal('conformalSignificance'))
                # Assign the prediction the correct index.
                for index, el in enumerate(test_index):
                    Y_pred[el] = prediction[index]
            # Iterate over the prediction and check the result
            for i in range(len(Y_pred)):
                real = float(Y[i])
                predicted = Y_pred[i]
                if predicted[0] != predicted[1]:
                    if real == 0 and predicted[0] == True:
                        c0_correct_all += 1
                    if real == 0 and predicted[1] == True:
                        c0_incorrect_all += 1
                    if real == 1 and predicted[1] == True:
                        c1_correct_all += 1
                    if real == 1 and predicted[0] == True:
                        c1_incorrect_all += 1
                else:
                    not_predicted_all += 1

        except Exception as e:
            LOG.error(f'Qualitative conformal validation'
                      f' failed with exception: {e}')
            raise e
        # Get the mean confusion matrix.
        self.TN = c0_correct_all
        self.FP = c0_incorrect_all
        self.TP = c1_correct_all
        self.FN = c1_incorrect_all
        not_predicted_all = not_predicted_all

        info.append(('TP', 'True positives in cross-validation', self.TP))
        info.append(('TN', 'True negatives in cross-validation', self.TN))
        info.append(('FP', 'False positives in cross-validation', self.FP))
        info.append(('FN', 'False negatives in cross-validation', self.FN))

        # Compute sensitivity, specificity and MCC
        try:
            self.sensitivity = (self.TP / (self.TP + self.FN))
        except Exception as e:
            LOG.error(f'Failed to compute sensibility with' f'exception {e}')
            self.sensitivity = '-'
        try:
            self.specificity = (self.TN / (self.TN + self.FP))
        except Exception as e:
            LOG.error(f'Failed to compute specificity with' f'exception {e}')
            self.specificity = '-'
        try:
            # Compute Matthews Correlation Coefficient
            self.mcc = (((self.TP * self.TN) - (self.FP * self.FN)) / np.sqrt(
                (self.TP + self.FP) * (self.TP + self.FN) *
                (self.TN + self.FP) * (self.TN + self.FN)))
        except Exception as e:
            LOG.error(f'Failed to compute Mathews Correlation Coefficient'
                      f'exception {e}')
            self.mcc = '-'

        info.append(('Sensitivity', 'Sensitivity in cross-validation',
                     self.sensitivity))
        info.append(('Specificity', 'Specificity in cross-validation',
                     self.specificity))
        info.append(
            ('MCC', 'Matthews Correlation Coefficient in cross-validation',
             self.mcc))
        try:
            # Compute coverage (% of compounds inside the applicability domain)
            self.conformal_coverage = (
                self.TN + self.FP + self.TP + self.FN) / (
                    (self.TN + self.FP + self.TP + self.FN) +
                    not_predicted_all)
        except Exception as e:
            LOG.error(f'Failed to compute conformal coverage with'
                      f'exception {e}')
            self.conformal_coverage = '-'

        try:
            # Compute accuracy (% of correct predictions)
            self.conformal_accuracy = (
                float(self.TN + self.TP) /
                float(self.FP + self.FN + self.TN + self.TP))
        except Exception as e:
            LOG.error(f'Failed to compute conformal accuracy with'
                      f'exception {e}')
            self.conformal_accuracy = '-'

        info.append(('Conformal_coverage', 'Conformal coverage',
                     self.conformal_coverage))
        info.append(('Conformal_accuracy', 'Conformal accuracy',
                     self.conformal_accuracy))

        results = {}
        results['quality'] = info
        #results ['classes'] = prediction
        return True, results
Пример #13
0
    def CF_quantitative_validation(self):
        ''' Performs internal  validation for conformal quantitative models '''

        # Make a copy of original matrices.
        X = self.X.copy()
        Y = self.Y.copy()

        info = []
        kf = KFold(n_splits=self.param.getVal('ModelValidationN'),
                   shuffle=True,
                   random_state=46)
        # Copy Y vector to use it as template to assign predictions
        Y_pred = copy.copy(Y).tolist()
        try:
            for train_index, test_index in kf.split(X):
                # Generate training and test sets
                X_train, X_test = X[train_index], X[test_index]
                Y_train, Y_test = Y[train_index], Y[test_index]
                # Generate training a test sets
                # Create the aggregated conformal regressor.
                conformal_pred = AggregatedCp(
                    IcpRegressor(
                        RegressorNc(RegressorAdapter(self.estimator_temp))),
                    BootstrapSampler())
                # Fit conformal regressor to the data
                conformal_pred.fit(X_train, Y_train)

                # Perform prediction on test set
                prediction = conformal_pred.predict(
                    X_test, self.param.getVal('conformalSignificance'))
                # Assign the prediction its original index
                for index, el in enumerate(test_index):
                    Y_pred[el] = prediction[index]

        except Exception as e:
            LOG.error(f'Quantitative conformal validation'
                      f' failed with exception: {e}')
            raise e

        Y_pred = np.asarray(Y_pred)
        # Add the n validation interval means
        interval_mean = np.mean(np.abs((Y_pred[:, 0]) - (Y_pred[:, 1])))
        # Get boolean mask of instances
        #  within the applicability domain.
        inside_interval = ((Y_pred[:, 0].reshape(-1, 1) < Y) &
                           (Y_pred[:, 1].reshape(-1, 1) > Y))
        # Compute the accuracy (number of instances within the AD).
        accuracy = np.sum(inside_interval) / len(Y)

        # Cut into two decimals.
        self.conformal_interval_medians = (np.mean(Y_pred, axis=1))
        self.conformal_accuracy = float("{0:.2f}".format(accuracy))
        self.conformal_mean_interval = float("{0:.2f}".format(interval_mean))

        #Add quality metrics to results.
        info.append(('Conformal_mean_interval', 'Conformal mean interval',
                     self.conformal_mean_interval))
        info.append(('Conformal_accuracy', 'Conformal accuracy',
                     self.conformal_accuracy))
        info.append(
            ('Conformal_interval_medians', 'Conformal interval medians',
             self.conformal_interval_medians))
        info.append(('Conformal_prediction_ranges',
                     'Conformal prediction ranges', Y_pred))

        results = {}
        results['quality'] = info
        return True, results
Пример #14
0
    def build(self):

        # Make a copy of data matrices
        X = self.X.copy()
        Y = self.Y.copy()

        results = []
        results.append(('nobj', 'number of objects', self.nobj))
        results.append(('nvarx', 'number of predictor variables', self.nvarx))

        if self.param.getVal('tune'):

            # Optimize estimator using sklearn-gridsearch
            if self.estimator_parameters['optimize'] == 'auto':
                try:

                    LOG.info('Optimizing PLSR using SK-LearnGridSearch')

                    # Remove optimize key from parameter dictionary
                    # to avoid sklearn estimator error (unexpected keyword)
                    self.estimator_parameters.pop("optimize")   

                    super(PLSR, self).optimize(X, Y, PLS_r(
                        **self.estimator_parameters), 
                        self.param.getDict('PLSR_optimize'))

                except Exception as e:
                    LOG.error(f'Error performing SK-LearnGridSearch'
                              f' on PLSR estimator with exception {e}')
                    return False, f'Error performing SK-LearnGridSearch on PLSR estimator with exception {e}'

            # Optimize using flame implementation (recommended)
            elif self.estimator_parameters['optimize'] == 'manual':

                LOG.info('Optimizing PLSR using manual method')

                # Remove optimize key from parameter dictionary
                # to avoid sklearn estimator error (unexpected keyword)
                self.estimator_parameters.pop("optimize")   

                success, message = self.optimize(X, Y, PLS_r(
                    **self.estimator_parameters), 
                    self.param.getDict('PLSR_optimize'))

                if not success:
                    return False, message

            else: 
                LOG.error('Type of tune not recognized, check the input')
                return False, 'Type of tune not recognized, check the input'    

            results.append(('model', 'model type', 'PLSR quantitative (optimized)'))

        else:
            LOG.info('Building Quantitative PLSR with no optimization')
            try:
                # Remove optimize key from parameters to avoid error
                self.estimator_parameters.pop("optimize") 

                # as the sklearn estimator does not have this key
                self.estimator = PLS_r(**self.estimator_parameters)
            except Exception as e:
                LOG.error(f'Error at PLS_r instantiation with '
                          f'exception {e}')
                return False, f'Error at PLS_da instantiation with exception {e}'

            results.append(('model', 'model type', 'PLSR quantitative'))
        
        # Fit estimator to the data
        self.estimator.fit(X, Y)

        if not self.param.getVal('conformal'):
            return True, results

        self.estimator_temp = copy(self.estimator)
        try:
            
            LOG.info('Building PLSR aggregated conformal predictor')

            underlying_model = RegressorAdapter(self.estimator_temp)
            # normalizing_model = RegressorAdapter(
            #     KNeighborsRegressor(n_neighbors=1))
            normalizing_model = RegressorAdapter(self.estimator_temp)
            normalizer = RegressorNormalizer(underlying_model, normalizing_model, AbsErrorErrFunc())

            nc = RegressorNc(underlying_model, AbsErrorErrFunc(), normalizer)
            self.estimator = AggregatedCp(IcpRegressor(nc), BootstrapSampler())

        except Exception as e:
            LOG.error(f'Error building aggregated PLSR conformal'
                        f' regressor with exception: {e}')
            return False, f'Error building aggregated PLSR conformal regressor with exception: {e}'

            # self.conformal_pred = AggregatedCp(IcpRegressor(
            # RegressorNc(RegressorAdapter(self.estimator))),
            #                                    BootstrapSampler())

        # Fit conformal estimator to the data
        self.estimator.fit(X, Y)

        # overrides non-conformal
        results.append(('model', 'model type', 'conformal PLSR quantitative'))

        return True, results
Пример #15
0
    def build(self):
        '''Build a new XGBOOST model with the X and Y numpy matrices '''

        try:
            from xgboost.sklearn import XGBClassifier
            from xgboost.sklearn import XGBRegressor
        except Exception as e:
            return False,  'XGboost not found, please revise your environment'

        # Make a copy of data matrices
        X = self.X.copy()
        Y = self.Y.copy()

        results = []
        results.append(('nobj', 'number of objects', self.nobj))
        results.append(('nvarx', 'number of predictor variables', self.nvarx))

        # If tune then call gridsearch to optimize the estimator
        if self.param.getVal('tune'):

            LOG.info("Optimizing XGBOOST estimator")
            
            try:
                # Check type of model
                if self.param.getVal('quantitative'):
                    self.estimator = XGBRegressor(
                                        **self.estimator_parameters)
                    self.optimize(X, Y, self.estimator, self.tune_parameters)
                    results.append(('model','model type','XGBOOST quantitative (optimized)'))
                else:
                    self.estimator = XGBClassifier(
                                        **self.estimator_parameters)
                    params = self.estimator.get_params()
                    params['num_class'] = 2
                    self.optimize(X, Y, self.estimator,
                                  self.tune_parameters)
                    results.append(('model','model type','XGBOOST qualitative (optimized)'))

            except Exception as e:
                return False, f'Exception optimizing XGBOOST estimator with exception {e}'
            
        else:
            try:
                if self.param.getVal('quantitative'):

                    LOG.info("Building Quantitative XGBOOST model")
                    # params = {
                    #     'objective': 'reg:squarederror',
                    #     'missing': -99.99999,
                    #     # 'max_depth': 20,
                    #     # 'learning_rate': 1.0,
                    #     # 'silent': 1,
                    #     # 'n_estimators': 25
                    #     }
                    # self.estimator = XGBRegressor(**params)
                    self.estimator = XGBRegressor(**self.estimator_parameters)
                    results.append(('model', 'model type', 'XGBOOST quantitative'))
                else:

                    LOG.info("Building Qualitative XGBOOST model")
                    # params = {
                    #     'objective': 'binary:logistic',
                    #      'max_depth': 3,
                    #      #'learning_rate': 0.7,
                    #      #'silent': 1,
                    #      'n_estimators': 100
                    #     }
                    self.estimator = XGBClassifier(**self.estimator_parameters)
                    results.append(('model', 'model type', 'XGBOOST qualitative'))

                self.estimator.fit(X, Y)
                print(self.estimator)

            except Exception as e:
                raise e
                return False, f'Exception building XGBOOST estimator with exception {e}'

        self.estimator_temp = copy(self.estimator)

        if not self.param.getVal('conformal'):
            return True, results
        # Create the conformal estimator
        try:
            # Conformal regressor
            if self.param.getVal('quantitative'):

                LOG.info("Building conformal Quantitative XGBOOST model")

                underlying_model = RegressorAdapter(self.estimator_temp)
                #normalizing_model = RegressorAdapter(
                    #KNeighborsRegressor(n_neighbors=5))
                normalizing_model = RegressorAdapter(self.estimator_temp)
                normalizer = RegressorNormalizer(
                                underlying_model,
                                normalizing_model,
                                AbsErrorErrFunc())
                nc = RegressorNc(underlying_model,
                                    AbsErrorErrFunc(),
                                    normalizer)

                # self.conformal_pred = AggregatedCp(IcpRegressor
                # (RegressorNc(RegressorAdapter(self.estimator))),
                #                                   BootstrapSampler())

                self.estimator = AggregatedCp(IcpRegressor(nc),
                                                BootstrapSampler())

                self.estimator.fit(X, Y)
                results.append(('model', 'model type', 'conformal XGBOOST quantitative'))

            # Conformal classifier
            else:

                LOG.info("Building conformal Qualitative XGBOOST model")

                self.estimator = AggregatedCp(
                                    IcpClassifier(
                                        ClassifierNc(
                                            ClassifierAdapter(self.estimator_temp),
                                            MarginErrFunc()
                                        )
                                    ),
                                    BootstrapSampler())

                # Fit estimator to the data
                self.estimator.fit(X, Y)
                results.append(('model', 'model type', 'conformal XGBOOST qualitative'))

        except Exception as e:
            raise e
            return False, f'Exception building conformal XGBOOST estimator with exception {e}'

        return True, results



## Overriding of parent methods

    # def CF_quantitative_validation(self):
    #     ''' performs validation for conformal quantitative models '''

      

    # def CF_qualitative_validation(self):
    #     ''' performs validation for conformal qualitative models '''


    # def quantitativeValidation(self):
    #     ''' performs validation for quantitative models '''

    # def qualitativeValidation(self):
    #     ''' performs validation for qualitative models '''


    # def validate(self):
    #     ''' Validates the model and computes suitable model quality scoring values'''


    # def optimize(self, X, Y, estimator, tune_parameters):
    #     ''' optimizes a model using a grid search over a range of values for diverse parameters'''


    # def regularProject(self, Xb, results):
    #     ''' projects a collection of query objects in a regular model, for obtaining predictions '''


    # def conformalProject(self, Xb, results):
    #     ''' projects a collection of query objects in a conformal model, for obtaining predictions '''


    # def project(self, Xb, results):
    #     ''' Uses the X matrix provided as argument to predict Y'''
Пример #16
0
# Define models
# -----------------------------------------------------------------------------

models = {
    'ACP-RandomSubSampler':
    AggregatedCp(
        IcpClassifier(ClassifierNc(ClassifierAdapter(
            DecisionTreeClassifier()))), RandomSubSampler()),
    'ACP-CrossSampler':
    AggregatedCp(
        IcpClassifier(ClassifierNc(ClassifierAdapter(
            DecisionTreeClassifier()))), CrossSampler()),
    'ACP-BootstrapSampler':
    AggregatedCp(
        IcpClassifier(ClassifierNc(ClassifierAdapter(
            DecisionTreeClassifier()))), BootstrapSampler()),
    'CCP':
    CrossConformalClassifier(
        IcpClassifier(ClassifierNc(ClassifierAdapter(
            DecisionTreeClassifier())))),
    'BCP':
    BootstrapConformalClassifier(
        IcpClassifier(ClassifierNc(ClassifierAdapter(
            DecisionTreeClassifier()))))
}

# -----------------------------------------------------------------------------
# Train, predict and evaluate
# -----------------------------------------------------------------------------
for name, model in models.iteritems():
    model.fit(data.data[train, :], data.target[train])
Пример #17
0
    def build(self):
        '''Build a new DL model with the X and Y numpy matrices '''

        try:
            from keras.wrappers.scikit_learn import KerasClassifier
            from keras.wrappers.scikit_learn import KerasRegressor
        except Exception as e:
            return False, 'Keras not found, please revise your environment'

        # Make a copy of data matrices
        X = self.X.copy()
        Y = self.Y.copy()

        results = []
        results.append(('nobj', 'number of objects', self.nobj))
        results.append(('nvarx', 'number of predictor variables', self.nvarx))

        # If tune then call gridsearch to optimize the estimator
        if self.param.getVal('tune'):

            LOG.info("Optimizing Keras estimator")

            try:
                # Check type of model
                if self.param.getVal('quantitative'):
                    self.estimator = KerasRegressor(
                        **self.estimator_parameters)
                    self.optimize(X, Y, self.estimator, self.tune_parameters)
                    results.append(('model', 'model type',
                                    'KERAS quantitative (optimized)'))
                else:
                    self.estimator = KerasClassifier(
                        **self.estimator_parameters)
                    #params = self.estimator.get_params()
                    #params['num_class'] = 2
                    self.optimize(X, Y, self.estimator, self.tune_parameters)
                    results.append(('model', 'model type',
                                    'KERAS qualitative (optimized)'))

            except Exception as e:
                return False, f'Exception optimizing KERAS estimator with exception {e}'

        else:
            try:
                if self.param.getVal('quantitative'):

                    LOG.info("Building Quantitative KERAS mode")
                    self.estimator = KerasRegressor(
                        build_fn=self.create_model,
                        **self.estimator_parameters,
                        verbose=0)
                    results.append(
                        ('model', 'model type', 'Keras quantitative'))
                else:

                    LOG.info("Building Qualitative Keras model")
                    self.estimator = KerasClassifier(
                        build_fn=self.create_model,
                        dim=self.X.shape[1],
                        **self.estimator_parameters,
                        verbose=0)
                    results.append(
                        ('model', 'model type', 'Keras qualitative'))

                self.estimator.fit(X, Y)
                print(self.estimator)

            except Exception as e:
                raise e
                return False, f'Exception building Keras estimator with exception {e}'

        self.estimator_temp = clone(self.estimator)

        if not self.param.getVal('conformal'):
            return True, results
        # Create the conformal estimator
        try:
            # Conformal regressor
            if self.param.getVal('quantitative'):

                LOG.info("Building conformal Quantitative Keras model")

                underlying_model = RegressorAdapter(self.estimator_temp)
                normalizing_model = RegressorAdapter(
                    KNeighborsRegressor(n_neighbors=15))
                # normalizing_model = RegressorAdapter(self.estimator_temp)
                normalizer = RegressorNormalizer(underlying_model,
                                                 normalizing_model,
                                                 AbsErrorErrFunc())
                nc = RegressorNc(underlying_model, AbsErrorErrFunc(),
                                 normalizer)

                # self.conformal_pred = AggregatedCp(IcpRegressor
                # (RegressorNc(RegressorAdapter(self.estimator))),
                #                                   BootstrapSampler())

                self.estimator = AggregatedCp(IcpRegressor(nc),
                                              BootstrapSampler())

                self.estimator.fit(X, Y)
                results.append(
                    ('model', 'model type', 'conformal Keras quantitative'))

            # Conformal classifier
            else:

                LOG.info("Building conformal Qualitative Keras model")

                self.estimator = AggregatedCp(
                    IcpClassifier(
                        ClassifierNc(ClassifierAdapter(self.estimator_temp),
                                     MarginErrFunc())), BootstrapSampler())

                # Fit estimator to the data
                print('build finished')
                self.estimator.fit(X, Y)
                results.append(
                    ('model', 'model type', 'conformal Keras qualitative'))

        except Exception as e:
            raise e
            return False, f'Exception building conformal Keras estimator with exception {e}'

        return True, []
Пример #18
0
    def CF_qualitative_validation(self):
        ''' performs validation for conformal qualitative models '''

        # Make a copy of original matrices.
        X = self.X.copy()
        Y = self.Y.copy()

        # Number of external validations for the
        # aggregated conformal estimator.
        seeds = [5, 7, 35]
        # Total number of class 0 correct predictions.
        c0_correct_all = []
        # Total number of class 0 incorrect predictions.
        c0_incorrect_all = []
        # Total number of class 1 correct predictions.
        c1_correct_all = []
        # Total number of class 1 incorrect predictions
        c1_incorrect_all = []
        # Total number of instances out of the applicability domain.
        not_predicted_all = []

        results = []
        # Iterate over the seeds.
        try:
            for i in range(len(seeds)):
                # Generate training and test sets
                X_train, X_test,\
                Y_train, Y_test = train_test_split(X, Y,
                                                    test_size=0.25,
                                                    random_state=i,
                                                    shuffle=True)
                # Create the aggregated conformal classifier.
                conformal_pred = AggregatedCp(
                    IcpClassifier(
                        ClassifierNc(ClassifierAdapter(self.estimator),
                                     MarginErrFunc())), BootstrapSampler())
                # Fit the conformal classifier to the data
                conformal_pred.fit(X_train, Y_train)
                # Perform prediction on test set
                prediction = conformal_pred.predict(X_test,
                                                    self.conformalSignificance)

                c0_correct = 0
                c1_correct = 0
                not_predicted = 0
                c0_incorrect = 0
                c1_incorrect = 0

                # Iterate over the prediction and check the result
                for i in range(len(Y_test)):
                    real = float(Y_test[i])
                    predicted = prediction[i]
                    if predicted[0] != predicted[1]:
                        if real == 0 and predicted[0] == True:
                            c0_correct += 1
                        if real == 0 and predicted[1] == True:
                            c0_incorrect += 1
                        if real == 1 and predicted[1] == True:
                            c1_correct += 1
                        if real == 1 and predicted[0] == True:
                            c1_incorrect += 1
                    else:
                        not_predicted += 1
                # Add the results to the lists.
                c0_correct_all.append(c0_correct)
                c0_incorrect_all.append(c0_incorrect)
                c1_correct_all.append(c1_correct)
                c1_incorrect_all.append(c1_incorrect)
                not_predicted_all.append(not_predicted)
        except Exception as e:
            LOG.error(f'Qualitative conformal validation'
                      f' failed with exception: {e}')
            raise e
        # Get the mean confusion matrix.
        self.TN = np.int(np.mean(c0_correct_all))
        self.FP = np.int(np.mean(c0_incorrect_all))
        self.TP = np.int(np.mean(c1_correct_all))
        self.FN = np.int(np.mean(c1_incorrect_all))
        not_predicted_all = np.int(np.mean(not_predicted_all))

        results.append(('TP', 'True positives in cross-validation', self.TP))
        results.append(('TN', 'True negatives in cross-validation', self.TN))
        results.append(('FP', 'False positives in cross-validation', self.FP))
        results.append(('FN', 'False negatives in cross-validation', self.FN))

        # Compute sensitivity and specificity
        self.sensitivity = (self.TP / (self.TP + self.FN))
        self.specificity = (self.TN / (self.TN + self.FP))
        # Compute Matthews Correlation Coefficient
        self.mcc = (((self.TP * self.TN) - (self.FP * self.FN)) / np.sqrt(
            (self.TP + self.FP) * (self.TP + self.FN) * (self.TN + self.FP) *
            (self.TN + self.FN)))
        results.append(('Sensitivity', 'Sensitivity in cross-validation',
                        self.sensitivity))
        results.append(('Specificity', 'Specificity in cross-validation',
                        self.specificity))
        results.append(
            ('MCC', 'Matthews Correlation Coefficient in cross-validation',
             self.mcc))

        # Compute coverage (% of compouds inside the applicability domain)
        self.conformal_coverage = (self.TN + self.FP + self.TP + self.FN) / (
            (self.TN + self.FP + self.TP + self.FN) + not_predicted_all)
        # Compute accuracy (% of correct predictions)
        self.conformal_accuracy = float(self.TN +
                                        self.TP) / float(self.FP + self.FN +
                                                         self.TN + self.TP)

        results.append(('Conformal_coverage', 'Conformal coverage',
                        self.conformal_coverage))
        results.append(('Conformal_accuracy', 'Conformal accuracy',
                        self.conformal_accuracy))

        return True, (results, )
Пример #19
0
    def build(self):
        '''Build a new RF model with the X and Y numpy matrices '''

        if self.failed:
            return False

        X = self.X.copy()
        Y = self.Y.copy()

        results = []

        results.append(('nobj', 'number of objects', self.nobj))
        results.append(('nvarx', 'number of predictor variables', self.nvarx))

        if self.cv:
            self.cv = getCrossVal(self.cv,
                                  self.estimator_parameters["random_state"],
                                  self.n, self.p)
        if self.tune:
            if self.quantitative:
                self.optimize(X, Y, RandomForestRegressor(),
                              self.tune_parameters)
                results.append(
                    ('model', 'model type', 'RF quantitative (optimized)'))
            else:
                self.optimize(X, Y, RandomForestClassifier(),
                              self.tune_parameters)
                results.append(
                    ('model', 'model type', 'RF qualitative (optimized)'))
        else:
            if self.quantitative:
                log.info("Building Quantitative RF model")
                self.estimator_parameters.pop('class_weight', None)

                self.estimator = RandomForestRegressor(
                    **self.estimator_parameters)
                results.append(('model', 'model type', 'RF quantitative'))

            else:
                log.info("Building Qualitative RF model")
                self.estimator = RandomForestClassifier(
                    **self.estimator_parameters)
                results.append(('model', 'model type', 'RF qualitative'))

        if self.conformal:
            if self.quantitative:
                underlying_model = RegressorAdapter(self.estimator)
                normalizing_model = RegressorAdapter(
                    KNeighborsRegressor(n_neighbors=5))
                normalizing_model = RegressorAdapter(self.estimator)
                normalizer = RegressorNormalizer(underlying_model,
                                                 normalizing_model,
                                                 AbsErrorErrFunc())
                nc = RegressorNc(underlying_model, AbsErrorErrFunc(),
                                 normalizer)
                # self.conformal_pred = AggregatedCp(IcpRegressor(RegressorNc(RegressorAdapter(self.estimator))),
                #                                   BootstrapSampler())

                self.conformal_pred = AggregatedCp(IcpRegressor(nc),
                                                   BootstrapSampler())
                self.conformal_pred.fit(X, Y)
                # overrides non-conformal
                results.append(
                    ('model', 'model type', 'conformal RF quantitative'))

            else:
                self.conformal_pred = AggregatedCp(
                    IcpClassifier(
                        ClassifierNc(ClassifierAdapter(self.estimator),
                                     MarginErrFunc())), BootstrapSampler())
                self.conformal_pred.fit(X, Y)
                # overrides non-conformal
                results.append(
                    ('model', 'model type', 'conformal RF qualitative'))

        self.estimator.fit(X, Y)

        return True, results


#### Overriding of parent methods

# def CF_quantitative_validation(self):
#     ''' performs validation for conformal quantitative models '''

# def CF_qualitative_validation(self):
#     ''' performs validation for conformal qualitative models '''

# def quantitativeValidation(self):
#     ''' performs validation for quantitative models '''

# def qualitativeValidation(self):
#     ''' performs validation for qualitative models '''

# def validate(self):
#     ''' Validates the model and computes suitable model quality scoring values'''

# def optimize(self, X, Y, estimator, tune_parameters):
#     ''' optimizes a model using a grid search over a range of values for diverse parameters'''

# def regularProject(self, Xb, results):
#     ''' projects a collection of query objects in a regular model, for obtaining predictions '''

# def conformalProject(self, Xb, results):
#     ''' projects a collection of query objects in a conformal model, for obtaining predictions '''

# def project(self, Xb, results):
#     ''' Uses the X matrix provided as argument to predict Y'''
Пример #20
0
    def test_acp_classification_tree(self):

        # -----------------------------------------------------------------------------
        # Experiment setup
        # -----------------------------------------------------------------------------
        data = load_iris()

        idx = np.random.permutation(data.target.size)
        train = idx[:int(2 * idx.size / 3)]
        test = idx[int(2 * idx.size / 3):]

        truth = data.target[test].reshape(-1, 1)
        columns = ["C-{}".format(i)
                   for i in np.unique(data.target)] + ["truth"]
        significance = 0.1

        # -----------------------------------------------------------------------------
        # Define models
        # -----------------------------------------------------------------------------

        models = {
            "ACP-RandomSubSampler":
            AggregatedCp(
                IcpClassifier(
                    ClassifierNc(ClassifierAdapter(DecisionTreeClassifier()))),
                RandomSubSampler(),
            ),
            "ACP-CrossSampler":
            AggregatedCp(
                IcpClassifier(
                    ClassifierNc(ClassifierAdapter(DecisionTreeClassifier()))),
                CrossSampler(),
            ),
            "ACP-BootstrapSampler":
            AggregatedCp(
                IcpClassifier(
                    ClassifierNc(ClassifierAdapter(DecisionTreeClassifier()))),
                BootstrapSampler(),
            ),
            "CCP":
            CrossConformalClassifier(
                IcpClassifier(
                    ClassifierNc(ClassifierAdapter(
                        DecisionTreeClassifier())))),
            "BCP":
            BootstrapConformalClassifier(
                IcpClassifier(
                    ClassifierNc(ClassifierAdapter(
                        DecisionTreeClassifier())))),
        }

        # -----------------------------------------------------------------------------
        # Train, predict and evaluate
        # -----------------------------------------------------------------------------
        for name, model in models.items():
            model.fit(data.data[train, :], data.target[train])
            prediction = model.predict(data.data[test, :],
                                       significance=significance)
            table = np.hstack((prediction, truth))
            df = pd.DataFrame(table, columns=columns)
            print("\n{}".format(name))
            print("Error rate: {}".format(
                class_mean_errors(prediction, truth, significance)))
            print(df)

        self.assertTrue(True)
Пример #21
0
Файл: RF.py Проект: e7dal/flame
    def build(self):
        '''Build a new RF model with the X and Y numpy matrices '''

        # Make a copy of data matrices
        X = self.X.copy()
        Y = self.Y.copy()

        results = []
        results.append(('nobj', 'number of objects', self.nobj))
        results.append(('nvarx', 'number of predictor variables', self.nvarx))
        results.append(('model', 'model type', 'RF'))

        conformal = self.param.getVal('conformal')
        # If tune then call gridsearch to optimize the estimator
        if self.param.getVal('tune'):

            LOG.info("Optimizing RF estimator")

            try:
                # Check type of model
                if self.param.getVal('quantitative'):
                    self.estimator = RandomForestRegressor(
                        **self.estimator_parameters)
                    self.optimize(X, Y, self.estimator, self.tune_parameters)
                    # results.append(('model','model type','RF quantitative (optimized)'))
                else:
                    self.estimator = RandomForestClassifier(
                        **self.estimator_parameters)
                    self.optimize(X, Y, self.estimator, self.tune_parameters)
                    # results.append(('model','model type','RF qualitative (optimized)'))

            except Exception as e:
                return False, f'Exception optimizing RF estimator with exception {e}'

        else:
            try:
                if self.param.getVal('quantitative'):

                    self.estimator = RandomForestRegressor(
                        **self.estimator_parameters)

                    if not conformal:
                        LOG.info("Building Quantitative RF model")
                        # results.append(('model', 'model type', 'RF quantitative'))
                else:

                    self.estimator = RandomForestClassifier(
                        **self.estimator_parameters)

                    if not conformal:
                        LOG.info("Building Qualitative RF model")
                        # results.append(('model', 'model type', 'RF qualitative'))

                self.estimator.fit(X, Y)

            except Exception as e:
                return False, f'Exception building RF estimator with exception {e}'

        if not conformal:
            return True, results

        self.estimator_temp = copy(self.estimator)

        # Create the conformal estimator
        try:
            # Conformal regressor
            if self.param.getVal('quantitative'):
                conformal_settings = self.param.getDict('conformal_settings')
                LOG.info("Building conformal Quantitative RF model")

                underlying_model = RegressorAdapter(self.estimator_temp)
                self.normalizing_model = RegressorAdapter(
                    KNeighborsRegressor(
                        n_neighbors=conformal_settings['KNN_NN']))
                # normalizing_model = RegressorAdapter(self.estimator_temp)
                normalizer = RegressorNormalizer(underlying_model,
                                                 copy(self.normalizing_model),
                                                 AbsErrorErrFunc())
                nc = RegressorNc(underlying_model, AbsErrorErrFunc(),
                                 normalizer)

                # self.conformal_pred = AggregatedCp(IcpRegressor
                # (RegressorNc(RegressorAdapter(self.estimator))),
                #                                   BootstrapSampler())

                self.estimator = AggregatedCp(IcpRegressor(nc),
                                              BootstrapSampler())

                self.estimator.fit(X, Y)
                # results.append(('model', 'model type', 'conformal RF quantitative'))

            # Conformal classifier
            else:

                LOG.info("Building conformal Qualitative RF model")

                self.estimator = AggregatedCp(
                    IcpClassifier(
                        ClassifierNc(ClassifierAdapter(self.estimator_temp),
                                     MarginErrFunc())), BootstrapSampler())

                # Fit estimator to the data
                self.estimator.fit(X, Y)
                # results.append(('model', 'model type', 'conformal RF qualitative'))

        except Exception as e:
            return False, f'Exception building conformal RF estimator with exception {e}'

        return True, results


## Overriding of parent methods

# def CF_quantitative_validation(self):
#     ''' performs validation for conformal quantitative models '''

# def CF_qualitative_validation(self):
#     ''' performs validation for conformal qualitative models '''

# def quantitativeValidation(self):
#     ''' performs validation for quantitative models '''

# def qualitativeValidation(self):
#     ''' performs validation for qualitative models '''

# def validate(self):
#     ''' Validates the model and computes suitable model quality scoring values'''

# def optimize(self, X, Y, estimator, tune_parameters):
#     ''' optimizes a model using a grid search over a range of values for diverse parameters'''

# def regularProject(self, Xb, results):
#     ''' projects a collection of query objects in a regular model, for obtaining predictions '''

# def conformalProject(self, Xb, results):
#     ''' projects a collection of query objects in a conformal model, for obtaining predictions '''

# def project(self, Xb, results):
#     ''' Uses the X matrix provided as argument to predict Y'''