Пример #1
0
def X_gmf_all():
    ''' ***TESTED -- Nov 8, 2017***
    Test to make sure that NG.X_gmf_all returns correct values
    '''
    X, nbins = NG.X_gmf_all(n_arr=True) 
    nmid = 0.5*(nbins[1:] + nbins[:-1])
    assert X.shape[1] == len(nmid)
    assert X.shape[0] == 20000

    fig = plt.figure(figsize=(5,5)) 
    sub = fig.add_subplot(111)
    for i in np.random.choice(range(X.shape[0]), 1000, replace=False):
        sub.plot(nmid, X[i,:], c='k', lw=0.01)
    sub.plot(nmid, np.average(X, axis=0), c='r', lw=2, ls='--')
    # x-axis
    sub.set_xlim([0., 180.]) 
    sub.set_xlabel('$N$', fontsize=20) 
    # y-axis
    sub.set_yscale('log') 
    sub.set_ylabel(r'$\zeta(N)$', fontsize=20) 
    fig.savefig(''.join([UT.fig_dir(), 'tests/X_gmf_all.png']), bbox_inches='tight') 
    plt.close() 
    return None 
Пример #2
0
def GMF_p_Xw_i(ica=False, pca=False): 
    ''' Test the probability distribution function of each transformed X
    component -- p(X^i). First compare the histograms of p(X_w^i) 
    with N(0,1). Then compare the gaussian KDE of p(X_w^i).
    '''
    gmf = NG.X_gmf_all() # import all the GMF mocks 
    X, _ = NG.meansub(gmf)
    str_w = 'W'
    if ica and pca: raise ValueError
    if ica: # ICA components
        # ICA components do not need to be Gaussian.
        # in fact the whole point of the ICA transform
        # is to capture the non-Gaussianity...
        X_white, _ = NG.whiten(X) # whitened data
        X_w, _ = NG.Ica(X_white) 
        str_w = 'ICA'
    if pca: # PCA components
        X_w, _ = NG.whiten(X, method='pca') # whitened data
        str_w = 'PCA'
    if not ica and not pca: # just whitened 
        X_w, W = NG.whiten(X) # whitened data
    
    # p(X_w^i) histograms
    fig = plt.figure(figsize=(5*gmf.shape[1],4))
    for icomp in range(gmf.shape[1]): 
        sub = fig.add_subplot(1, gmf.shape[1], icomp+1)
        # histogram of X_w^i s 
        hh = np.histogram(X_w[:,icomp], normed=True, bins=50, range=[-5., 5.])
        p_X_w_arr = UT.bar_plot(*hh)
        sub.fill_between(p_X_w_arr[0], np.zeros(len(p_X_w_arr[1])), p_X_w_arr[1], 
                color='k', alpha=0.25)
        x = np.linspace(-5., 5., 100)
        sub.plot(x, UT.gauss(x, 1., 0.), c='k', lw=2, ls=':', label='$\mathcal{N}(0,1)$')
        # p(X_w^i) gaussian KDE fits  
        t_start = time.time() 
        pdf = NG.p_Xw_i(X_w, icomp, x=x, method='gkde')
        sub.plot(x, pdf, lw=2.5, label='Gaussian KDE')
        print 'scipy Gaussian KDE ', time.time()-t_start
        # p(X_w^i) SKlearn KDE fits  
        t_start = time.time() 
        pdf = NG.p_Xw_i(X_w, icomp, x=x, method='sk_kde')
        sub.plot(x, pdf, lw=2.5, label='SKlearn KDE')
        print 'SKlearn CV best-fit KDE ', time.time()-t_start
        # p(X_w^i) statsmodels KDE fits  
        t_start = time.time() 
        pdf = NG.p_Xw_i(X_w, icomp, x=x, method='sm_kde')
        sub.plot(x, pdf, lw=2.5, label='StatsModels KDE')
        print 'Stats Models KDE ', time.time()-t_start
        # p(X_w^i) GMM fits  
        pdf = NG.p_Xw_i(X_w, icomp, x=x, method='gmm', n_comp_max=20)
        sub.plot(x, pdf, lw=2.5, ls='--', label='GMM')
        sub.set_xlim([-3., 3.])
        sub.set_xlabel('$X_{'+str_w+'}^{('+str(icomp)+')}$', fontsize=25) 
        sub.set_ylim([0., 0.6])
        if icomp == 0: 
            sub.set_ylabel('$P(X_{'+str_w+'})$', fontsize=25) 
            sub.legend(loc='upper left', prop={'size': 15}) 

    str_ica, str_pca = '', ''
    if ica: str_ica = '.ICA'
    if pca: str_pca = '.PCA'

    f = ''.join([UT.fig_dir(), 'tests/test.GMF_p_Xw_i', str_pca, str_ica, '.png'])
    fig.savefig(f, bbox_inches='tight') 
    return None 
Пример #3
0
def divGMF(div_func='kl', Nref=1000, K=5, n_mc=10, n_comp_max=10, n_mocks=2000):
    ''' compare the divergence estimates between 
    D( gauss(C_gmf) || gauss(C_gmf) ),  D( gmfs || gauss(C_gmf) ), 
    D( gmfs || p(gmfs) KDE), D( gmfs || p(gmfs) GMM), 
    D( gmfs || PI p(gmfs^i_ICA) KDE), and D( gmfs || PI p(gmfs^i_ICA) GMM)
    '''
    if isinstance(Nref, float): 
        Nref = int(Nref)
    # read in mock GMFs from all HOD realizations (20,000 mocks)
    gmfs_mock = NG.X_gmf_all()[:n_mocks]
    n_mock = gmfs_mock.shape[0] # number of mocks 
    print("%i mocks" % n_mock) 

    gmfs_mock_meansub, _ = NG.meansub(gmfs_mock) # mean subtract
    X_w, W = NG.whiten(gmfs_mock_meansub)
    X_ica, _ = NG.Ica(X_w)  # ICA transformation 

    C_gmf = np.cov(X_w.T) # covariance matrix

    # p(gmfs) GMM
    gmms, bics = [], [] 
    for i_comp in range(1,n_comp_max+1):
        gmm = GMix(n_components=i_comp)
        gmm.fit(X_w) 
        gmms.append(gmm)
        bics.append(gmm.bic(X_w))
    ibest = np.array(bics).argmin() 
    kern_gmm = gmms[ibest]

    # p(gmfs) KDE 
    t0 = time.time() 
    grid = GridSearchCV(skKDE(),
            {'bandwidth': np.linspace(0.1, 1.0, 30)},
            cv=10) # 10-fold cross-validation
    grid.fit(X_w)
    kern_kde = grid.best_estimator_
    dt = time.time() - t0 
    print('%f sec' % dt) 
    
    # PI p(gmfs^i_ICA) GMM
    kern_gmm_ica = [] 
    for ibin in range(X_ica.shape[1]): 
        gmms, bics = [], [] 
        for i_comp in range(1,n_comp_max+1):
            gmm = GMix(n_components=i_comp)
            gmm.fit(X_ica[:,ibin][:,None]) 
            gmms.append(gmm)
            bics.append(gmm.bic(X_ica[:,ibin][:,None]))
        ibest = np.array(bics).argmin() 
        kern_gmm_ica.append(gmms[ibest])
    
    # PI p(gmfs^i_ICA) KDE  
    kern_kde_ica = [] 
    for ibin in range(X_ica.shape[1]): 
        t0 = time.time() 
        grid = GridSearchCV(skKDE(),
                {'bandwidth': np.linspace(0.1, 1.0, 30)},
                cv=10) # 10-fold cross-validation
        grid.fit(X_ica[:,ibin][:,None]) 
        kern_kde_ica.append(grid.best_estimator_) 
        dt = time.time() - t0 
        print('%f sec' % dt) 

    # caluclate the divergences now 
    div_gauss_ref, div_gauss = [], []
    div_gmm, div_gmm_ica = [], [] 
    div_kde, div_kde_ica = [], [] 
    for i in range(n_mc): 
        print('%i montecarlo' % i)
        t_start = time.time() 
        # reference divergence in order to showcase the estimator's scatter
        # Gaussian distribution described by C_gmf with same n_mock mocks 
        gauss = mvn(np.zeros(gmfs_mock.shape[1]), C_gmf, size=n_mock)
        div_gauss_ref_i = NG.kNNdiv_gauss(gauss, C_gmf, Knn=K, div_func=div_func, Nref=Nref)
        div_gauss_ref.append(div_gauss_ref_i)
        # estimate divergence between gmfs_white and a 
        # Gaussian distribution described by C_gmf
        div_gauss_i = NG.kNNdiv_gauss(X_w, C_gmf, Knn=K, div_func=div_func, Nref=Nref)
        div_gauss.append(div_gauss_i)
        # D( gmfs || p(gmfs) GMM)
        div_gmm_i = NG.kNNdiv_Kernel(X_w, kern_gmm, Knn=K, div_func=div_func, 
                Nref=Nref, compwise=False) 
        div_gmm.append(div_gmm_i)
        # D( gmfs || p(gmfs) KDE)
        div_kde_i = NG.kNNdiv_Kernel(X_w, kern_kde, Knn=K, div_func=div_func, 
                Nref=Nref, compwise=False) 
        div_kde.append(div_kde_i)
        # D( gmfs || PI p(gmfs^i_ICA) GMM), 
        div_gmm_ica_i = NG.kNNdiv_Kernel(X_ica, kern_gmm_ica, Knn=K, div_func=div_func, 
                Nref=Nref, compwise=True)
        div_gmm_ica.append(div_gmm_ica_i)
        # D( gmfs || PI p(gmfs^i_ICA) KDE), 
        div_kde_ica_i = NG.kNNdiv_Kernel(X_ica, kern_kde_ica, Knn=K, div_func=div_func, 
                Nref=Nref, compwise=True)
        div_kde_ica.append(div_kde_ica_i)
        print('t= %f sec' % round(time.time()-t_start,2))

    fig = plt.figure(figsize=(10,5))
    sub = fig.add_subplot(111)
    hrange = [-0.15, 0.6]
    nbins = 50
    
    divs = [div_gauss_ref, div_gauss, div_gmm, div_kde, div_gmm_ica, div_kde_ica]
    labels = ['Ref.', r'$D(\{\zeta_i^{(m)}\}\parallel \mathcal{N}({\bf C}^{(m)}))$', 
            r'$D(\{\zeta^{(m)}\}\parallel p_\mathrm{GMM}(\{\zeta^{m}\}))$',
            r'$D(\{\zeta^{(m)}\}\parallel p_\mathrm{KDE}(\{\zeta^{m}\}))$',
            r'$D(\{\zeta_\mathrm{ICA}^{(m)}\}\parallel \prod_{i} p^\mathrm{GMM}(\{\zeta_{i, \mathrm{ICA}}^{m}\}))$', 
            r'$D(\{\zeta_\mathrm{ICA}^{(m)}\}\parallel \prod_{i} p^\mathrm{KDE}(\{\zeta_{i, \mathrm{ICA}}^{m}\}))$']
    y_max = 0.
    for div, lbl in zip(divs, labels): 
        hh = np.histogram(np.array(div), normed=True, range=hrange, bins=nbins)
        bp = UT.bar_plot(*hh) 
        sub.fill_between(bp[0], np.zeros(len(bp[0])), bp[1], edgecolor='none', 
                alpha=0.5, label=lbl) 
        y_max = max(y_max, bp[1].max()) 
        if (np.average(div) < hrange[0]) or (np.average(div) > hrange[1]): 
            print('divergence of %s (%f) is outside range' % (lbl, np.average(div)))
    sub.set_xlim(hrange) 
    sub.set_ylim([0., y_max*1.2]) 
    sub.legend(loc='upper left', prop={'size': 15})
    # xlabels
    if 'renyi' in div_func: 
        alpha = float(div_func.split(':')[-1])
        sub.set_xlabel(r'Renyi-$\alpha='+str(alpha)+'$ divergence', fontsize=20)
    elif 'kl' in div_func: 
        sub.set_xlabel(r'KL divergence', fontsize=20)
    if 'renyi' in div_func: str_div = 'renyi'+str(alpha) 
    elif div_func == 'kl': str_div = 'kl'
    f_fig = ''.join([UT.fig_dir(), 'tests/kNN_divergence.gmf.K', str(K), '.', str(n_mocks), 
        '.', str_div, '.png'])
    fig.savefig(f_fig, bbox_inches='tight') 
    return None
Пример #4
0
def diverge(obvs,
            diver,
            div_func='kl',
            Nref=1000,
            K=5,
            n_mc=10,
            n_comp_max=10,
            n_mocks=20000,
            pk_mock='patchy.z1',
            NorS='ngc',
            njobs=1):
    ''' calculate the divergences: 

    - D( gauss(C_X) || gauss(C_X) ) 
    - D( mock X || gauss(C_X))
    - D( mock X || p(X) KDE)
    - D( mock X || p(X) GMM) 
    - D( mock X || PI p(X^i_ICA) KDE)
    - D( mock X || PI p(X^i_ICA) GMM)
    '''
    if isinstance(Nref, float): Nref = int(Nref)
    if diver not in [
            'ref', 'pX_gauss', 'pX_gauss_hartlap', 'pX_GMM', 'pX_GMM_ref',
            'pX_KDE', 'pX_KDE_ref', 'pX_scottKDE', 'pX_scottKDE_ref',
            'pXi_ICA_GMM', 'pXi_ICA_GMM_ref', 'pXi_parICA_GMM',
            'pXi_parICA_GMM_ref', 'pXi_ICA_KDE', 'pXi_ICA_KDE_ref',
            'pXi_parICA_KDE', 'pXi_parICA_KDE_ref', 'pXi_ICA_scottKDE',
            'pXi_ICA_scottKDE_ref', 'pXi_parICA_scottKDE',
            'pXi_parICA_scottKDE_ref'
    ]:
        raise ValueError
    str_obvs = ''
    if obvs == 'pk': str_obvs = '.' + NorS
    if 'renyi' in div_func:
        alpha = float(div_func.split(':')[-1])
        str_div = 'renyi' + str(alpha)
    elif div_func == 'kl':
        str_div = 'kl'
    str_comp = ''
    if 'GMM' in diver: str_comp = '.ncomp' + str(n_comp_max)

    f_dat = ''.join([
        UT.dat_dir(), 'diverg/', 'diverg.', obvs, str_obvs, '.', diver, '.K',
        str(K), str_comp, '.Nref',
        str(Nref), '.', str_div, '.dat'
    ])
    if not os.path.isfile(f_dat):
        print('-- writing to -- \n %s' % f_dat)
        f_out = open(f_dat, 'w')
    else:
        print('-- appending to -- \n %s' % f_dat)

    # read in mock data X
    if obvs == 'pk':
        X_mock = NG.X_pk_all(pk_mock, NorS=NorS, sys='fc')
    elif obvs == 'gmf':
        if n_mocks is not None:
            X_mock = NG.X_gmf_all()[:n_mocks]
        else:
            X_mock = NG.X_gmf_all()
    else:
        raise ValueError("obvs = 'pk' or 'gmf'")
    n_mock = X_mock.shape[0]  # number of mocks
    print("%i mocks" % n_mock)

    X_mock_meansub, _ = NG.meansub(X_mock)  # mean subtract
    X_w, W = NG.whiten(X_mock_meansub)
    if '_ICA' in diver:
        X_ica, W_ica = NG.Ica(X_w)  # ICA transformation
        W_ica_inv = sp.linalg.pinv(W_ica.T)
    elif '_parICA' in diver:
        # FastICA transformation using parallel algorithm
        X_ica, W_ica = NG.Ica(X_w, algorithm='parallel')
        W_ica_inv = sp.linalg.pinv(W_ica.T)

    if diver in ['pX_gauss', 'ref']:
        C_X = np.cov(X_w.T)  # covariance matrix
    elif diver in ['pX_gauss_hartlap']:
        C_X = np.cov(X_w.T)  # covariance matrix
        f_hartlap = (n_mock - float(X_mock.shape[1]) - 2.) / (n_mock - 1.)
        print("hartlap factor = %f" % f_hartlap)
        C_X = C_X / f_hartlap  # scale covariance matrix by hartlap factor
    elif diver in ['pX_GMM', 'pX_GMM_ref']:  # p(mock X) GMM
        gmms, bics = [], []
        for i_comp in range(1, n_comp_max + 1):
            gmm = GMix(n_components=i_comp)
            gmm.fit(X_w)
            gmms.append(gmm)
            bics.append(gmm.bic(X_w))
        ibest = np.array(bics).argmin()
        kern_gmm = gmms[ibest]
    elif diver in ['pX_KDE', 'pX_KDE_ref']:  # p(mock X) KDE
        t0 = time.time()
        grid = GridSearchCV(skKDE(), {'bandwidth': np.linspace(0.1, 1.0, 30)},
                            cv=10,
                            n_jobs=njobs)  # 10-fold cross-validation
        grid.fit(X_w)
        kern_kde = grid.best_estimator_
        dt = time.time() - t0
        print('%f sec' % dt)
    elif diver in ['pX_scottKDE', 'pX_scottKDE_ref']:  # p(mock X) KDE
        # calculate Scott's Rule KDE
        t0 = time.time()
        kern_kde = UT.KayDE(X_w)
        dt = time.time() - t0
        print('%f sec' % dt)
    elif diver in [
            'pXi_ICA_GMM', 'pXi_ICA_GMM_ref', 'pXi_parICA_GMM',
            'pXi_parICA_GMM_ref'
    ]:
        # PI p(X^i_ICA) GMM
        kern_gmm_ica = []
        for ibin in range(X_ica.shape[1]):
            gmms, bics = [], []
            for i_comp in range(1, n_comp_max + 1):
                gmm = GMix(n_components=i_comp)
                gmm.fit(X_ica[:, ibin][:, None])
                gmms.append(gmm)
                bics.append(gmm.bic(X_ica[:, ibin][:, None]))
            ibest = np.array(bics).argmin()
            kern_gmm_ica.append(gmms[ibest])
    elif diver in [
            'pXi_ICA_KDE', 'pXi_ICA_KDE_ref', 'pXi_parICA_KDE',
            'pXi_parICA_KDE_ref'
    ]:
        # PI p(X^i_ICA) KDE
        kern_kde_ica = []
        for ibin in range(X_ica.shape[1]):
            t0 = time.time()
            grid = GridSearchCV(skKDE(),
                                {'bandwidth': np.linspace(0.1, 1.0, 30)},
                                cv=10,
                                n_jobs=njobs)  # 10-fold cross-validation
            grid.fit(X_ica[:, ibin][:, None])
            kern_kde_ica.append(grid.best_estimator_)
            dt = time.time() - t0
            print('%f sec' % dt)
    elif diver in [
            'pXi_ICA_scottKDE', 'pXi_ICA_scottKDE_ref', 'pXi_parICA_scottKDE',
            'pXi_parICA_scottKDE_ref'
    ]:
        # PI p(X^i_ICA) KDE
        kern_kde_ica = []
        for ibin in range(X_ica.shape[1]):
            kern_kde_i = UT.KayDE(X_ica[:, ibin])
            kern_kde_ica.append(kern_kde_i)

    # caluclate the divergences now
    divs = []
    for i in range(n_mc):
        print('%i montecarlo' % i)
        t0 = time.time()
        if diver in ['pX_gauss', 'pX_gauss_hartlap']:
            # estimate divergence between gmfs_white and a
            # Gaussian distribution described by C_gmf
            div_i = NG.kNNdiv_gauss(X_w,
                                    C_X,
                                    Knn=K,
                                    div_func=div_func,
                                    Nref=Nref,
                                    njobs=njobs)
        elif diver == 'ref':
            # reference divergence in order to showcase the estimator's scatter
            # Gaussian distribution described by C_gmf with same n_mock mocks
            gauss = mvn(np.zeros(X_mock.shape[1]), C_X, size=n_mock)
            div_i = NG.kNNdiv_gauss(gauss,
                                    C_X,
                                    Knn=K,
                                    div_func=div_func,
                                    Nref=Nref,
                                    njobs=njobs)
        elif diver == 'pX_GMM':  # D( mock X || p(X) GMM)
            div_i = NG.kNNdiv_Kernel(X_w,
                                     kern_gmm,
                                     Knn=K,
                                     div_func=div_func,
                                     Nref=Nref,
                                     compwise=False,
                                     njobs=njobs)
        elif diver == 'pX_GMM_ref':  # D( sample from p(X) GMM || p(X) GMM)
            samp = kern_gmm.sample(n_mock)
            div_i = NG.kNNdiv_Kernel(samp[0],
                                     kern_gmm,
                                     Knn=K,
                                     div_func=div_func,
                                     Nref=Nref,
                                     compwise=False,
                                     njobs=njobs)
        elif diver in ['pX_KDE', 'pX_scottKDE']:  # D( mock X || p(X) KDE)
            div_i = NG.kNNdiv_Kernel(X_w,
                                     kern_kde,
                                     Knn=K,
                                     div_func=div_func,
                                     Nref=Nref,
                                     compwise=False,
                                     njobs=njobs)
            divs.append(div_i)
        elif diver in ['pX_KDE_ref', 'pX_scottKDE_ref'
                       ]:  # D( sample from p(X) KDE || p(X) KDE)
            samp = kern_kde.sample(n_mock)
            div_i = NG.kNNdiv_Kernel(samp,
                                     kern_kde,
                                     Knn=K,
                                     div_func=div_func,
                                     Nref=Nref,
                                     compwise=False,
                                     njobs=njobs)
            divs.append(div_i)
        elif diver in ['pXi_ICA_GMM',
                       'pXi_parICA_GMM']:  # D( mock X || PI p(X^i_ICA) GMM),
            div_i = NG.kNNdiv_Kernel(X_w,
                                     kern_gmm_ica,
                                     Knn=K,
                                     div_func=div_func,
                                     Nref=Nref,
                                     compwise=True,
                                     njobs=njobs,
                                     W_ica_inv=W_ica_inv)
        elif diver in ['pXi_ICA_GMM_ref', 'pXi_parICA_GMM_ref']:
            # D( ref. sample || PI p(X^i_ICA) GMM),
            samp = np.zeros((n_mock, X_ica.shape[1]))
            for icomp in range(X_ica.shape[1]):
                samp_i = kern_gmm_ica[icomp].sample(n_mock)
                samp[:, icomp] = samp_i[0].flatten()
            samp = np.dot(samp, W_ica_inv.T)
            div_i = NG.kNNdiv_Kernel(samp,
                                     kern_gmm_ica,
                                     Knn=K,
                                     div_func=div_func,
                                     Nref=Nref,
                                     compwise=True,
                                     njobs=njobs,
                                     W_ica_inv=W_ica_inv)
        elif diver in [
                'pXi_ICA_KDE', 'pXi_ICA_scottKDE', 'pXi_parICA_KDE',
                'pXi_parICA_scottKDE'
        ]:  # D( mock X || PI p(X^i_ICA) KDE),
            div_i = NG.kNNdiv_Kernel(X_w,
                                     kern_kde_ica,
                                     Knn=K,
                                     div_func=div_func,
                                     Nref=Nref,
                                     compwise=True,
                                     njobs=njobs,
                                     W_ica_inv=W_ica_inv)
        elif diver in [
                'pXi_ICA_KDE_ref', 'pXi_ICA_scottKDE_ref',
                'pXi_parICA_KDE_ref', 'pXi_parICA_scottKDE_ref'
        ]:
            # D( ref sample || PI p(X^i_ICA) KDE),
            samp = np.zeros((n_mock, X_ica.shape[1]))
            for icomp in range(X_ica.shape[1]):
                samp_i = kern_kde_ica[icomp].sample(n_mock)
                samp[:, icomp] = samp_i.flatten()
            samp = np.dot(samp, W_ica_inv.T)
            div_i = NG.kNNdiv_Kernel(samp,
                                     kern_kde_ica,
                                     Knn=K,
                                     div_func=div_func,
                                     Nref=Nref,
                                     compwise=True,
                                     njobs=njobs,
                                     W_ica_inv=W_ica_inv)
        print(div_i)
        f_out = open(f_dat, 'a')
        f_out.write('%f \n' % div_i)
        f_out.close()
    return None
Пример #5
0
def W_importance(tag,
                 chain,
                 ica_algorithm=None,
                 density_method='kde',
                 n_comp_max=20,
                 info_crit='bic',
                 njobs=1,
                 **kwargs):
    ''' Given a dictionary with the MCMC chain, evaluate the likelihood ratio 
    '''
    if 'RSD' in tag:  # Florian's RSD analysis
        if 'zbin' not in kwargs.keys():
            raise ValueError('specify zbin in kwargs')

        # read in BOSS P(k) (data D)
        k_list, pk_ngc_data, pk_sgc_data = [], [], []
        pkay = Dat.Pk()
        for ell in [0, 2, 4]:
            k, plk_ngc = pkay.Observation(ell, kwargs['zbin'], 'ngc')
            _, plk_sgc = pkay.Observation(ell, kwargs['zbin'], 'sgc')
            k_list.append(k)
            pk_ngc_data.append(plk_ngc)
            pk_sgc_data.append(plk_sgc)
        pk_ngc_data = np.concatenate(pk_ngc_data)
        pk_sgc_data = np.concatenate(pk_sgc_data)

        binrange1, binrange2, binrange3 = len(k_list[0]), len(k_list[1]), len(
            k_list[2])
        maxbin1 = len(k_list[0]) + 1
        k = np.concatenate(k_list)

        # calculate D - m(theta) for all the mcmc chain
        delta_ngc = chain['pk_ngc'] - pk_ngc_data
        delta_sgc = chain['pk_sgc'] - pk_sgc_data

        # import PATCHY mocks
        pk_ngc_list, pk_sgc_list = [], []
        for ell in [0, 2, 4]:
            if ell == 4: kmax = 0.1
            else: kmax = 0.15
            pk_ngc_list.append(
                NG.X_pk('patchy.z' + str(kwargs['zbin']),
                        krange=[0.01, kmax],
                        ell=ell,
                        NorS='ngc',
                        sys='fc'))
            pk_sgc_list.append(
                NG.X_pk('patchy.z' + str(kwargs['zbin']),
                        krange=[0.01, kmax],
                        ell=ell,
                        NorS='sgc',
                        sys='fc'))
        pk_ngc_mock = np.concatenate(pk_ngc_list, axis=1)
        pk_sgc_mock = np.concatenate(pk_sgc_list, axis=1)

        if tag == 'RSD_pXiICA_gauss':  # P_ICA(D - m(theta)) / P_PCA,Gauss(D - m(theta))
            lnP_ica_ngc = NG.lnL_pXi_ICA(delta_ngc,
                                         pk_ngc_mock,
                                         ica_algorithm=ica_algorithm,
                                         density_method=density_method,
                                         n_comp_max=n_comp_max,
                                         info_crit=info_crit,
                                         njobs=njobs)
            lnP_ica_sgc = NG.lnL_pXi_ICA(delta_sgc,
                                         pk_sgc_mock,
                                         ica_algorithm=ica_algorithm,
                                         density_method=density_method,
                                         n_comp_max=n_comp_max,
                                         info_crit=info_crit,
                                         njobs=njobs)

            lnP_gauss_ngc = NG.lnL_pca_gauss(delta_ngc, pk_ngc_mock)
            lnP_gauss_sgc = NG.lnL_pca_gauss(delta_sgc, pk_sgc_mock)

            lnP_num = lnP_ica_ngc + lnP_ica_sgc
            lnP_den = lnP_gauss_ngc + lnP_gauss_sgc
        elif tag == 'RSD_ica_chi2':
            # this should be consistent with above!
            lnP_ica_ngc = NG.lnL_pXi_ICA(delta_ngc,
                                         pk_ngc_mock,
                                         ica_algorithm=ica_algorithm,
                                         density_method=density_method,
                                         n_comp_max=n_comp_max,
                                         info_crit=info_crit,
                                         njobs=njobs)
            lnP_ica_sgc = NG.lnL_pXi_ICA(delta_sgc,
                                         pk_sgc_mock,
                                         ica_algorithm=ica_algorithm,
                                         density_method=density_method,
                                         n_comp_max=n_comp_max,
                                         info_crit=info_crit,
                                         njobs=njobs)

            lnP_num = lnP_ica_ngc + lnP_ica_sgc
            lnP_den = -0.5 * chain['chi2']

    elif 'gmf' in tag:  # GMF
        geemf = Dat.Gmf()  # read in SDSS GMF (data D)
        nbins, gmf_data = geemf.Observation()

        # calculate D - m(theta) for all the mcmc chain
        dgmf = gmf_data - chain['gmf']

        # read mock gmfs (all mocks from 100 differnet HOD parameter points)
        gmf_mock = NG.X_gmf_all(
        )  #gmf_mock = NG.X_gmf('manodeep.run'+str(kwargs['run']))#

        # old likelihood derived from chi-squared of MCMC chain
        lnP_den = -0.5 * chain['chi2']  # -0.5 chi-squared from MCMC chain

        if tag == 'gmf_all_chi2':
            # importance weight determined by the ratio of
            # the chi^2 from the chain and the chi^2 calculated
            # using the covariance matrix from the entire catalog
            # we note that Sinha et al.(2017) does not include the
            # hartlap factor
            Cgmf = np.cov(gmf_mock.T)  # covariance matrix
            Cinv = np.linalg.inv(Cgmf)  # precision matrix

            lnP_num = np.empty(dgmf.shape[0])
            for i in range(dgmf.shape[0]):  # updated chi-square
                lnP_num[i] = -0.5 * np.dot(dgmf[i, :],
                                           np.dot(Cinv, dgmf[i, :].T))
        if tag == 'gmf_pXiICA_chi2':
            # updated likelihood is calculated using
            # ln( PI_i p( delta_X_ICA_i | X_ICA_i^(gmm/kde)) )
            lnP_num = NG.lnL_pXi_ICA(dgmf,
                                     gmf_mock,
                                     ica_algorithm=ica_algorithm,
                                     density_method=density_method,
                                     n_comp_max=n_comp_max,
                                     info_crit=info_crit,
                                     njobs=njobs)
        elif tag == 'gmf_pX_chi2':
            # updated likelihood is calculated using
            # ln( p( delta_X | X^(gmm/kde) ) )
            lnP_num = NG.lnL_pX(dgmf,
                                gmf_mock,
                                density_method=density_method,
                                n_comp_max=n_comp_max,
                                info_crit=info_crit,
                                njobs=njobs)
        elif tag == 'gmf_lowN_chi2':
            # importance weight determined by the ratio of
            # the chi^2 from the chain and the chi^2 calculated
            # using the covariance matrix from the entire catalog
            # and *excluding the highest N bin*
            Cgmf = np.cov(gmf_mock.T)  # covariance matrix
            Cinv = np.linalg.inv(Cgmf)  # precision matrix
            Nlim = Cinv.shape[0] - 1

            lnP_num = np.empty(dgmf.shape[0])
            for i in range(dgmf.shape[0]):  # updated chi-square
                lnP_num[i] = -0.5 * np.dot(
                    dgmf[i, :Nlim], np.dot(Cinv[:Nlim, :Nlim],
                                           dgmf[i, :Nlim].T))
        else:
            raise NotImplementedError
    else:
        raise ValueError

    ws = np.exp(lnP_num - lnP_den)
    return [lnP_den, lnP_num, ws]