def index(mapper, bulk_size=10000): """Indexing""" pres_prof_mapping = gen_mappings() file = open(WP_ST_F, "r") index_name = WP_ST_INDEX_ID mappings = { "content": Elastic.analyzed_field(), "professions": Elastic.notanalyzed_field() } elastic = Elastic(index_name) elastic.create_index(mappings, force=True) doc_id = 0 docs = {} for line in file: doc_id += 1 profs = [] while ("[" in line): # replace [A|B] with A matchObj = re.search('\[(.*?)\]', line) entity = matchObj.group(1).split("|")[0] name = entity.replace("_", " ") entity_id = mapper.get_id_from_person(name) prof_list = pres_prof_mapping[name] prof_list = [mapper.get_id_from_prof(prof) for prof in prof_list] profs += prof_list line = line.replace("[" + matchObj.group(1) + "]", entity_id) docs[doc_id] = {"content": line, "professions": list(set(profs))} if len(docs) == bulk_size: # bulk add 10000 sentences into elastic elastic.add_docs_bulk(docs) docs = {} print(doc_id / 1000, "K documents indexed.") # if len(docs) < 10000: # index the last butch of sentences elastic.add_docs_bulk(docs)
def get_mappings(self): """Sets the mappings""" mappings = {Elastic.FIELD_CATCHALL: Elastic.analyzed_field()} mappings["abstract"] = Elastic.analyzed_field() for field in self._fsdm_fields: mappings[field] = Elastic.analyzed_field() return mappings
def __init__(self, index_name, association_file, assoc_mode, retr_model, retr_params, num_docs=None, field="content", run_id="fusion", num=100): """ :param index_name: name of index :param association_file: document-object association file :param assoc_mode: document-object weight mode, uniform or binary :param retr_model: document-object weight mode, uniform or binary :param retr_params: parameter in similarity method """ self._index_name = index_name self._field = field self._num_docs = num_docs self._elastic = Elastic(self._index_name) self._model = retr_model self._params = retr_params self._elastic.update_similarity(self._model, self._params) self.association_file = association_file self.assoc_doc = {} self.assoc_obj = {} self.run_id = run_id self._assoc_mode = assoc_mode self._num = num
def __init__(self, index_name, association_file, object_length_file, assoc_mode, retr_params, field="content", run_id="fusion"): """ :param index_name: name of index :param association_file: document-object association file :param object_length_file: object length file :param assoc_mode: document-object weight mode, uniform or binary :param retr_params: BM25 parameter dict :param field: field to be searched """ self._index_name = index_name self._elastic = Elastic(self._index_name) self._k1 = retr_params.get("k1", 1.2) self._b = retr_params.get("b", 0.75) self._field = field self._o_l = object_length(object_length_file) self._collection_length = self._elastic.coll_length(self._field) self._N = self._elastic.num_docs() self._assoc_mode = assoc_mode self.association_file = association_file self.assoc_doc = {} self.assoc_obj = {} self.run_id = run_id
def get_mappings(self): """Sets the mappings""" mappings = {Elastic.FIELD_CATCHALL: Elastic.notanalyzed_searchable_field()} for field in self._fsdm_fields: mappings[field] = Elastic.notanalyzed_searchable_field() self.get_top_fields() for field in self.__top_fields: mappings[field] = Elastic.notanalyzed_searchable_field() return mappings
def build(self, callback_get_doc_content, bulk_size=1000): """Builds the DBpedia index from the mongo collection. To speedup indexing, we index documents as a bulk. There is an optimum value for the bulk size; try to figure it out. :param callback_get_doc_content: a function that get a documet from mongo and return the content for indexing :param bulk_size: Number of documents to be added to the index as a bulk """ PLOGGER.info("Building " + self.__index_name + " ...") elastic = Elastic(self.__index_name) elastic.create_index(self.__mappings, model=self.__model, force=True) i = 0 docs = dict() for mdoc in self.__mongo.find_all(no_timeout=True): docid = Mongo.unescape(mdoc[Mongo.ID_FIELD]) # get back document from mongo with keys and _id field unescaped doc = callback_get_doc_content(Mongo.unescape_doc(mdoc)) if doc is None: continue docs[docid] = doc i += 1 if i % bulk_size == 0: elastic.add_docs_bulk(docs) docs = dict() PLOGGER.info(str(i / 1000) + "K documents indexed") # indexing the last bulk of documents elastic.add_docs_bulk(docs) PLOGGER.info("Finished indexing (" + str(i) + " documents in total)")
def build_index(self, force=False): """Builds the index. Note: since DBpedia only has a few hundred types, no bulk indexing is needed. :param force: True iff it is required to overwrite the index (i.e. by creating it by force); False by default. :type force: bool :return: """ PLOGGER.info("Building type index {}".format(self.__index_name)) self.__elastic = Elastic(self.__index_name) self.__elastic.create_index(mappings=self.__MAPPINGS, force=force) for type_name in self.__types_entities: PLOGGER.info(" Adding {} ...".format(type_name)) contents = self.__make_type_doc(type_name) self.__elastic.add_doc(type_name, contents) PLOGGER.info(" Done.")
def __init__(self, index_name, association_file, assoc_mode, retr_params, run_id="fusion", field="content", num=100): """ :param index_name: name of index :param association_file: document-object association file :param assoc_mode: document-object weight mode, uniform or binary :param lambda: smoothing parameter :param field: field to be searched """ self._index_name = index_name self._elastic = Elastic(self._index_name) self._lambda = retr_params.get("lambda", 0.1) self._field = field self._collection_length = self._elastic.coll_length(self._field) self._assoc_mode = assoc_mode self._num = num self.association_file = association_file self.assoc_doc = {} self.assoc_obj = {} self.run_id = run_id
def main(): index_name = "toy_index" mappings = { # "id": Elastic.notanalyzed_field(), "title": Elastic.analyzed_field(), "content": Elastic.analyzed_field(), } docs = { 1: { "title": "Rap God", "content": "gonna, gonna, Look, I was gonna go easy on you and not to hurt your feelings" }, 2: { "title": "Lose Yourself", "content": "Yo, if you could just, for one minute Or one split second in time, forget everything Everything that bothers you, or your problems Everything, and follow me" }, 3: { "title": "Love The Way You Lie", "content": "Just gonna stand there and watch me burn But that's alright, because I like the way it hurts" }, 4: { "title": "The Monster", "content": [ "gonna gonna I'm friends with the monster", "That's under my bed Get along with the voices inside of my head" ] }, 5: { "title": "Beautiful", "content": "Lately I've been hard to reach I've been too long on my own Everybody has a private world Where they can be alone" } } elastic = Elastic(index_name) elastic.create_index(mappings, force=True) elastic.add_docs_bulk(docs) print("index has been built")
class EarlyFusionScorer(FusionScorer): def __init__(self, index_name, association_file, assoc_mode, retr_params, run_id="fusion", field="content", num=100): """ :param index_name: name of index :param association_file: document-object association file :param assoc_mode: document-object weight mode, uniform or binary :param lambda: smoothing parameter :param field: field to be searched """ self._index_name = index_name self._elastic = Elastic(self._index_name) self._lambda = retr_params.get("lambda", 0.1) self._field = field self._collection_length = self._elastic.coll_length(self._field) self._assoc_mode = assoc_mode self._num = num self.association_file = association_file self.assoc_doc = {} self.assoc_obj = {} self.run_id = run_id def score_query(self, query): """ Scores a given query. :param query: query to be searched :return: pqo """ # retrieving documents aquery = self._elastic.analyze_query(query) pr = self._elastic.search(aquery, self._field, num=self._num) q = self.parse(aquery) # scoring objects, i.e., computing P(q|o) pqo = {} qt = Counter(q) for t, ftq in qt.items(): # Scores each query term and sums up, i.e., computing P(t|o) # Gets term frequency in collections term = stemmer.stemWords(t.split())[0] try: ftc = self._elastic.coll_term_freq(term, self._field) if ftc == None: print("Ignore term", t) continue except: print("Ignore term", t) continue ptc = ftc / self._collection_length # Fuses ptd for each object ptd_fused = {} for item in pr.keys(): doc_id = item if doc_id in self.assoc_doc: try: ftd = self._elastic.term_freq(doc_id, term, self._field) except: # the content of doc is empty ftd = 0 doc_length = self._elastic.doc_length(doc_id, self._field) ptd = ftd / doc_length for object_id in self.assoc_doc[doc_id]: if self._assoc_mode == FusionScorer.ASSOC_MODE_BINARY: w_do = 1 elif self._assoc_mode == FusionScorer.ASSOC_MODE_UNIFORM: w_do = 1 / len(self.assoc_obj[object_id]) else: w_do = 0 # this should never happen ptd_fused[object_id] = ptd_fused.get(object_id, 0) + ptd * w_do # Adds pto to pqo for object_id in self.assoc_obj.keys(): fptd = ptd_fused.get(object_id, 0) pto = math.log((1 - self._lambda) * fptd + self._lambda * ptc) * ftq pqo[object_id] = pqo.get(object_id, 0) + pto return RetrievalResults(pqo)
class IndexerDBpediaTypes(object): __DOC_TYPE = "doc" # we don't make use of types __MAPPINGS = { "id": Elastic.notanalyzed_field(), "content": Elastic.analyzed_field(), } def __init__(self, config): self.__elastic = None self.__config = config self.__index_name = config["index_name"] self.__dbpedia_path = config["dbpedia_files_path"] # For triple parsing self.__prefix = URIPrefix() self.__triple = Triple() self.__ntparser = NTriplesParser(self.__triple) # Entity abstract and type assignments kept in memory self.__entity_abstracts = {} self.__load_entity_abstracts() self.__types_entities = defaultdict(list) self.__load_entity_types() @property def name(self): return self.__index_name def __parse_line(self, line): """Parses a line from a ttl file and returns subject and object pair. It is used for parsing DBpedia abstracts and entity types. The subject is always prefixed. For object URIs, it is returned prefixed if from DBpedia otherwise None (i.e., types); literal objects are always returned (i.e., abstracts). """ line = line.decode("utf-8") if isinstance(line, bytes) else line try: self.__ntparser.parsestring(line) except ParseError: # skip lines that couldn't be parsed return None, None if self.__triple.subject() is None: # only if parsed as a triple return None, None subj = self.__prefix.get_prefixed(self.__triple.subject()) obj = None if type(self.__triple.object()) is URIRef: if self.__triple.object().startswith( "http://dbpedia.org/ontology"): obj = self.__prefix.get_prefixed(self.__triple.object()) else: obj = self.__triple.object().encode("utf-8") return subj, obj def __load_entity_abstracts(self): num_lines = 0 filename = os.sep.join([self.__dbpedia_path, ENTITY_ABSTRACTS_FILE]) PLOGGER.info("Loading entity abstracts from {}".format(filename)) for line in FileUtils.read_file_as_list(filename): entity, abstract = self.__parse_line(line) if abstract and len(abstract) > 0: # skip empty objects self.__entity_abstracts[entity] = abstract num_lines += 1 if num_lines % 10000 == 0: PLOGGER.info(" {}K lines processed".format(num_lines // 1000)) PLOGGER.info(" Done.") def __load_entity_types(self): num_lines = 0 for types_file in ENTITY_TYPES_FILES: filename = os.sep.join([self.__dbpedia_path, types_file]) PLOGGER.info("Loading entity types from {}".format(filename)) for line in FileUtils.read_file_as_list(filename): entity, entity_type = self.__parse_line(line) if type(entity_type) != str: # Likely result of parsing error continue if not entity_type.startswith("<dbo:"): PLOGGER.info(" Non-DBpedia type: {}".format(entity_type)) continue if not entity.startswith("<dbpedia:"): PLOGGER.info(" Invalid entity: {}".format(entity)) continue self.__types_entities[entity_type].append(entity) num_lines += 1 if num_lines % 10000 == 0: PLOGGER.info(" {}K lines processed".format(num_lines // 1000)) PLOGGER.info(" Done.") def __make_type_doc(self, type_name): """Gets the document representation of a type to be indexed, from its entity short abstracts.""" content = "\n".join([ self.__entity_abstracts.get(e, b"").decode("utf-8") for e in self.__types_entities[type_name] ]) if len(content) > MAX_BULKING_DOC_SIZE: PLOGGER.info("Type {} has content larger than allowed: {}.".format( type_name, len(content))) # we randomly sample a subset of Y entity abstracts, s.t. # Y * AVG_SHORT_ABSTRACT_LEN <= MAX_BULKING_DOC_SIZE num_entities = len(self.__types_entities[type_name]) amount_abstracts_to_sample = min( floor(MAX_BULKING_DOC_SIZE / AVG_SHORT_ABSTRACT_LEN), num_entities) entities_sample = [ self.__types_entities[type_name][i] for i in sample( range(num_entities), amount_abstracts_to_sample) ] content = "" # reset content for entity in entities_sample: new_content_candidate = "\n".join([ content, self.__entity_abstracts.get(entity, b"").decode("utf-8") ]) # we add an abstract only if by doing so it will not exceed # MAX_BULKING_DOC_SIZE if len(new_content_candidate) > MAX_BULKING_DOC_SIZE: break content = new_content_candidate return {"content": content} def build_index(self, force=False): """Builds the index. Note: since DBpedia only has a few hundred types, no bulk indexing is needed. :param force: True iff it is required to overwrite the index (i.e. by creating it by force); False by default. :type force: bool :return: """ PLOGGER.info("Building type index {}".format(self.__index_name)) self.__elastic = Elastic(self.__index_name) self.__elastic.create_index(mappings=self.__MAPPINGS, force=force) for type_name in self.__types_entities: PLOGGER.info(" Adding {} ...".format(type_name)) contents = self.__make_type_doc(type_name) self.__elastic.add_doc(type_name, contents) PLOGGER.info(" Done.")
from nordlys.core.retrieval.elastic import Elastic index_name = "cerc-expert" query = ["climate", "change"] elas = Elastic(index_name) model = "LMJelinekMercer" params = {"lambda": 0.1} elas.update_similarity(model, params) pr = elas.search(query, "content")['hits'] print(pr[0]['_score']) print(pr[1]['_score']) print(pr[2]['_score']) mode1 = "BM25" params1 = {"k1": 1.2, "b": 0.75} elas1 = Elastic(index_name) elas1.update_similarity(mode1, params1) pr1 = elas.search(query, "content")['hits'] print(pr1[0]['_score']) print(pr1[1]['_score']) print(pr1[2]['_score'])
class Statistics(object): index_name = "blog_test6" elastic = Elastic(index_name) def __init__(self): self.index_name = self.index_name def TF(self, term, doc_id, field): # return term frequency in doc stat = self.elastic.get_termvector_all(docid=doc_id) term1 = stemmer.stemWords(term.split())[0] if field == "title": try: tf_title = stat['term_vectors']['title']['terms'][term1][ 'term_freq'] except: tf_title = 0 return tf_title elif field == "content": try: tf_con = stat['term_vectors']['content']['terms'][term1][ 'term_freq'] except: tf_con = 0 return tf_con def DL(self, doc_id, field): # return doc length stat = self.elastic.get_termvector_all(docid=doc_id) if field == "title": dl = stat['term_vectors']['title']['field_statistics']['sum_ttf'] return dl elif field == "content": dl_c = stat['term_vectors']['content']['field_statistics'][ 'sum_ttf'] return dl_c def TF_C(self, term, field): # return term frequency in collection tf_c_t = 0 tf_c_c = 0 pr = self.elastic.search_all(self.index_name, term, fields_return="", start=0, num=100)['hits'] if field == "content": for item in pr: record = self.elastic.get_termvector_all(docid=item['_id']) term1 = stemmer.stemWords(term.split())[0] try: tf_c_c += record['term_vectors']['content']['terms'][ term1]['term_freq'] except: tf_c_c += 0 return tf_c_c elif field == "title": for item in pr: record = self.elastic.get_termvector_all(docid=item['_id']) term1 = stemmer.stemWords(term.split())[0] try: tf_c_t += record['term_vectors']['title']['terms'][term1][ 'term_freq'] except: tf_c_t += 0 return tf_c_t def CL(self, term, field): # return collection length cl_t = 0 cl_c = 0 pr = self.elastic.search_all(self.index_name, term, fields_return="", start=0, num=100)['hits'] for item in pr: record = self.elastic.get_termvector_all(docid=item['_id']) cl_t = cl_t + record['term_vectors']['title']['field_statistics'][ 'sum_ttf'] cl_c = cl_c + record['term_vectors']['content'][ 'field_statistics']['sum_ttf'] if field == "title": return cl_t elif field == "content": return cl_c
class EarlyFusionScorer(FusionScorer): def __init__(self, index_name, association_file, object_length_file, assoc_mode, retr_params, field="content", run_id="fusion"): """ :param index_name: name of index :param association_file: document-object association file :param object_length_file: object length file :param assoc_mode: document-object weight mode, uniform or binary :param retr_params: BM25 parameter dict :param field: field to be searched """ self._index_name = index_name self._elastic = Elastic(self._index_name) self._k1 = retr_params.get("k1", 1.2) self._b = retr_params.get("b", 0.75) self._field = field self._o_l = object_length(object_length_file) self._collection_length = self._elastic.coll_length(self._field) self._N = self._elastic.num_docs() self._assoc_mode = assoc_mode self.association_file = association_file self.assoc_doc = {} self.assoc_obj = {} self.run_id = run_id def score_query(self, query): """ Scores a given query. :param query: query to be searched :return: pqo """ aquery = self._elastic.analyze_query(query) pr = self._elastic.search(aquery, self._field) avg_ol = self._collection_length / (len(self.assoc_obj)) q = self.parse(aquery) # Scoring objects, i.e., computing P(q|o) pqo = {} qt = Counter(q) for t, ftq in qt.items(): # Scores each query term and sums up, i.e., computing P(t|o) # Retrieving documents and gets IDF n = len(self._elastic.search( t, self._field)) # number of documents containing term t if n == 0: continue idf = math.log((self._N - n + 0.5) / (n + 0.5)) # Fuses f(t,o) for each object term = stemmer.stemWords(t.split())[0] ftd_fused = {} for item in pr.keys(): doc_id = item if doc_id in self.assoc_doc: try: ftd = self._elastic.term_freq(doc_id, term, self._field) except: # doc without content ftd = 0 for object_id in self.assoc_doc[doc_id]: if self._assoc_mode == FusionScorer.ASSOC_MODE_BINARY: w_do = 1 elif self._assoc_mode == FusionScorer.ASSOC_MODE_UNIFORM: w_do = 1 / len(self.assoc_obj[object_id]) else: w_do = 0 # this should never happen ftd_fused[object_id] = ftd_fused.get(object_id, 0) + ftd * w_do # Add pto into pqo for object_id in self.assoc_obj.keys(): ol = int(self._o_l[object_id]) fftd = ftd_fused.get(object_id, 0) score = (fftd * (self._k1 + 1)) / ( fftd + self._k1 * (1 - self._b + self._b * ol / avg_ol)) pqo[object_id] = pqo.get(object_id, 0) + idf * score return RetrievalResults(pqo)
class IndexerDBpediaTypes(object): __DOC_TYPE = "doc" # we don't make use of types __MAPPINGS = { # ID_KEY: Elastic.notanalyzed_field(), CONTENT_KEY: Elastic.analyzed_field(), } def __init__(self, config): self.__elastic = None self.__config = config self.__model = config.get("model", Elastic.BM25) self.__index_name = config["index_name"] self.__type2entity_file = config["type2entity_file"] self.__entity_abstracts = {} self.__load_entity_abstracts(config["entity_abstracts_file"]) @property def name(self): return self.__index_name def __load_entity_abstracts(self, filename): prefix = URIPrefix() t = Triple() p = NTriplesParser(t) lines_counter = 0 PLOGGER.info("Loading entity abstracts from {}".format(filename)) for line in FileUtils.read_file_as_list(filename): # basic line parsing line = line.decode("utf-8") if isinstance(line, bytes) else line try: p.parsestring(line) except ParseError: # skip lines that couldn't be parsed continue if t.subject() is None: # only if parsed as a triple continue # Subject and object identification subj = prefix.get_prefixed(t.subject()) obj = "" if type(t.object()) is URIRef: # PLOGGER.error("Error: it is URIRef the parsed obj") pass else: obj = t.object().encode("utf-8") if len(obj) == 0: continue # skip empty objects self.__entity_abstracts[subj] = obj lines_counter += 1 if lines_counter % 10000 == 0: PLOGGER.info("\t{}K lines processed".format(lines_counter // 1000)) pass PLOGGER.info("\n### Loading entity abstracts... Done.") def __make_type_doc(self, entities, last_type): """Gets the document representation of a type to be indexed, from its entity short abstracts.""" content = ABSTRACTS_SEPARATOR.join([self.__entity_abstracts.get(e, b"").decode("utf-8") for e in entities]) if len(content) > MAX_BULKING_DOC_SIZE: PLOGGER.info("Type {} has content larger than allowed: {}.".format(last_type, len(content))) # we randomly sample a subset of Y entity abstracts, s.t. Y * AVG_SHORT_ABSTRACT_LEN <= MAX_BULKING_DOC_SIZE amount_abstracts_to_sample = min(floor(MAX_BULKING_DOC_SIZE / AVG_SHORT_ABSTRACT_LEN), len(entities)) entities_sample = [entities[i] for i in sample(range(len(entities)), amount_abstracts_to_sample)] content = "" # reset content for entity in entities_sample: new_content_candidate = (content + ABSTRACTS_SEPARATOR + self.__entity_abstracts.get(entity, b"").decode("utf-8")) # we add an abstract only if by doing so it will not exceed MAX_BULKING_DOC_SIZE if len(new_content_candidate) <= MAX_BULKING_DOC_SIZE: content = new_content_candidate else: break return {CONTENT_KEY: content} def build_index(self, force=False): """Builds the index. :param force: True iff it is required to overwrite the index (i.e. by creating it by force); False by default. :type force: bool :return: """ self.__elastic = Elastic(self.__index_name) self.__elastic.create_index(mappings=self.__MAPPINGS, force=force) prefix = URIPrefix() # For indexing types in bulk types_bulk = {} # dict from type id to type(=doc) # process type2entity file last_type = None entities = [] lines_counter = 0 types_counter = 0 with FileUtils.open_file_by_type(self.__type2entity_file) as f: for line in f: line = line.decode() # o.w. line is made of bytes if not line.startswith("<"): # bad-formed lines in dataset continue subj, obj = line.rstrip().split() type = prefix.get_prefixed(subj) # subject prefixed entity = prefix.get_prefixed(obj) # use only DBpedia Ontology native types (no bibo, foaf, schema, etc.) if not type.startswith(DBO_PREFIX): continue if last_type is not None and type != last_type: # moving to new type, so: # create a doc for this type, with all the abstracts for its entities, and store it in a bulk types_counter += 1 # PLOGGER.info("\n\tFound {}-th type: {}\t\t with # of entities: {}".format(types_counter, # last_type, # len(entities))) types_bulk[last_type] = self.__make_type_doc(entities, last_type) entities = [] # important to reset it if types_counter % BULK_LEN == 0: # index the bulk of BULK_LEN docs self.__elastic.add_docs_bulk(types_bulk) types_bulk.clear() # NOTE: important to reset it PLOGGER.info("\tIndexing a bulk of {} docs (types)... OK. " "{} types already indexed.".format(BULK_LEN, types_counter)) last_type = type entities.append(entity) lines_counter += 1 if lines_counter % 10000 == 0: # PLOGGER.info("\t{}K lines processed".format(lines_counter // 1000)) pass pass # index the last type types_counter += 1 PLOGGER.info("\n\tFound {}-th (last) type: {}\t\t with # of entities: {}".format(types_counter, last_type, len(entities))) types_bulk[last_type] = self.__make_type_doc(entities, last_type) self.__elastic.add_docs_bulk(types_bulk) # a tiny bulk :) # no need to reset neither entities nor types_bulk :P # PLOGGER.info("Indexing a bulk of {} docs (types)... OK.".format(BULK_LEN)) PLOGGER.info("\n### Indexing all {} found docs (types)... Done.".format(types_counter))
def build_index(self, force=False): """Builds the index. :param force: True iff it is required to overwrite the index (i.e. by creating it by force); False by default. :type force: bool :return: """ self.__elastic = Elastic(self.__index_name) self.__elastic.create_index(mappings=self.__MAPPINGS, force=force) prefix = URIPrefix() # For indexing types in bulk types_bulk = {} # dict from type id to type(=doc) # process type2entity file last_type = None entities = [] lines_counter = 0 types_counter = 0 with FileUtils.open_file_by_type(self.__type2entity_file) as f: for line in f: line = line.decode() # o.w. line is made of bytes if not line.startswith("<"): # bad-formed lines in dataset continue subj, obj = line.rstrip().split() type = prefix.get_prefixed(subj) # subject prefixed entity = prefix.get_prefixed(obj) # use only DBpedia Ontology native types (no bibo, foaf, schema, etc.) if not type.startswith(DBO_PREFIX): continue if last_type is not None and type != last_type: # moving to new type, so: # create a doc for this type, with all the abstracts for its entities, and store it in a bulk types_counter += 1 # PLOGGER.info("\n\tFound {}-th type: {}\t\t with # of entities: {}".format(types_counter, # last_type, # len(entities))) types_bulk[last_type] = self.__make_type_doc(entities, last_type) entities = [] # important to reset it if types_counter % BULK_LEN == 0: # index the bulk of BULK_LEN docs self.__elastic.add_docs_bulk(types_bulk) types_bulk.clear() # NOTE: important to reset it PLOGGER.info("\tIndexing a bulk of {} docs (types)... OK. " "{} types already indexed.".format(BULK_LEN, types_counter)) last_type = type entities.append(entity) lines_counter += 1 if lines_counter % 10000 == 0: # PLOGGER.info("\t{}K lines processed".format(lines_counter // 1000)) pass pass # index the last type types_counter += 1 PLOGGER.info("\n\tFound {}-th (last) type: {}\t\t with # of entities: {}".format(types_counter, last_type, len(entities))) types_bulk[last_type] = self.__make_type_doc(entities, last_type) self.__elastic.add_docs_bulk(types_bulk) # a tiny bulk :) # no need to reset neither entities nor types_bulk :P # PLOGGER.info("Indexing a bulk of {} docs (types)... OK.".format(BULK_LEN)) PLOGGER.info("\n### Indexing all {} found docs (types)... Done.".format(types_counter))
class LateFusionScorer(FusionScorer): def __init__(self, index_name, association_file, assoc_mode, retr_model, retr_params, num_docs=None, field="content", run_id="fusion", num=100): """ :param index_name: name of index :param association_file: document-object association file :param assoc_mode: document-object weight mode, uniform or binary :param retr_model: document-object weight mode, uniform or binary :param retr_params: parameter in similarity method """ self._index_name = index_name self._field = field self._num_docs = num_docs self._elastic = Elastic(self._index_name) self._model = retr_model self._params = retr_params self._elastic.update_similarity(self._model, self._params) self.association_file = association_file self.assoc_doc = {} self.assoc_obj = {} self.run_id = run_id self._assoc_mode = assoc_mode self._num = num def score_query(self, query): """ Scores a given query. :param query: query to be searched :return: pqo dict """ # retrieving documents aquery = self._elastic.analyze_query(query) # analyzed query res = self._elastic.search(aquery, self._field, num=self._num) # scoring objects, i.e., computing P(q|o) pqo = {} for i, item in enumerate(list(res.keys())): if self._num_docs is not None and i + 1 == self._num_docs: # consider only top documents break doc_id = item doc_score = res[doc_id] if doc_id in self.assoc_doc: for object_id in self.assoc_doc[doc_id]: if self._assoc_mode == FusionScorer.ASSOC_MODE_BINARY: w_do = 1 elif self._assoc_mode == FusionScorer.ASSOC_MODE_UNIFORM: w_do = 1 / len(self.assoc_obj[object_id]) else: w_do = 0 # this should never happen pqo[object_id] = pqo.get(object_id, 0) + doc_score * w_do return RetrievalResults(pqo)