def test_fetch_multiple_subsample(): af = AtlasFetcher() atlas = af.fetch_multiple_atlases(['Darmanis_2015', 'Enge_2017'], kind='subsample') assert (isinstance(atlas, AnnData)) assert ('CellType' in atlas.obs.columns) assert ('Dataset' in atlas.obs.columns)
def test_fetch_multiple_subsample(): af = AtlasFetcher() atlas = af.fetch_multiple_atlases(['Darmanis_2015', 'Enge_2017'], kind='subsample') assert (isinstance(atlas, dict)) assert ('counts' in atlas) assert ('cell_types' in atlas)
def test_fetch_Enge_2017(): af = AtlasFetcher() atlas = af.fetch_atlas('Enge_2017') assert (isinstance(atlas, AnnData)) assert ('NumberOfCells' in atlas.obs.columns) counts = atlas[:, ['INS', 'GCG', 'PPY']] assert (counts['beta', 'INS'].X > counts['acinar', 'INS'].X)
def test_fetch_Enge_2017(): af = AtlasFetcher() atlas = af.fetch_atlas('Enge_2017') assert (isinstance(atlas, dict)) assert ('counts' in atlas) assert ('number_of_cells' in atlas) counts = atlas['counts'].loc[['INS', 'GCG', 'PPY']] assert (counts.loc['INS', 'beta'] > counts.loc['INS', 'acinar'])
def test_average_Darmanis_2015(): af = AtlasFetcher() atlas = af.fetch_atlas('Darmanis_2015', kind='subsample') ss = average_atlas( atlas, ) assert(isinstance(ss, anndata.AnnData)) assert(ss.shape[0] == 8)
def test_run_within_atlas(): aname = 'Darmanis_2015' atlas = AtlasFetcher().fetch_atlas(aname, kind='subsample') matrix = atlas.copy() cell_types = atlas.obs['CellType'].values sa = Subsample(aname) sa.fit(matrix) # Small samples are a bit tricky, one cell can tip the balance assert ((cell_types == sa.membership).mean() >= 0.85)
def test_run_across_atlas(): atlas = AtlasFetcher().fetch_atlas('Enge_2017', kind='subsample') matrix = atlas.copy() cell_types = atlas.obs['CellType'].values sa = Subsample( 'Baron_2016', n_pcs=25, n_features_per_cell_type=3, n_features_overdispersed=200, ) sa.fit(matrix) # Nobody's perfect # Baron annotates Stellate cells more accurately, so we skip them assert ((cell_types == sa.membership)[:60].mean() >= 0.5)
def test_run_within_atlas(): aname = 'Darmanis_2015' atlas = AtlasFetcher().fetch_atlas(aname, kind='subsample') matrix = atlas['counts'] cell_types = atlas['cell_types'].values sa = Subsample(aname) sa.fit(matrix) # Nobody's perfect assert ((cell_types == sa.membership).mean() >= 0.9)
def test_run_within_atlas_means(): aname = 'Darmanis_2015' atlas = AtlasFetcher().fetch_atlas(aname, kind='average') ind = [0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 4, 5, 6, 0] matrix = atlas['counts'].iloc[:, ind] cell_types = atlas['counts'].columns.values[ind] sa = Subsample(aname) sa.fit(matrix) # Nobody's perfect assert ((cell_types == sa.membership).mean() >= 0.9)
def test_run_mock_cells(): aname = 'Darmanis_2015_nofetal' atlas = AtlasFetcher().fetch_atlas(aname, kind='average') ind = [0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 4, 5] matrix = atlas[ind] cell_types = atlas.obs_names.values[ind] sa = Averages( aname, n_pcs=10, ) sa.fit(matrix) assert ((cell_types == sa.membership).mean() > 0.9)
def test_embed_averages(): aname = 'Darmanis_2015_nofetal' atlas = AtlasFetcher().fetch_atlas(aname, kind='subsample') ind = [ 0, 2, 5, 8, 10, 15, 20, 25, 28, 30, 35, 38, 40, 45, 50, 60, 70, 75, 80, 90 ] matrix = atlas[ind].copy() sa = Averages( aname, n_features_per_cell_type=2, n_features_overdispersed=5, n_pcs=9, ) sa.fit(matrix) vs = sa.embed() assert (vs.shape[1] == 4)
def test_run_within_atlas(): aname = 'Darmanis_2015_nofetal' atlas = AtlasFetcher().fetch_atlas(aname, kind='subsample') ind = [ 0, 2, 5, 8, 10, 15, 20, 25, 28, 30, 35, 38, 40, 45, 50, 60, 70, 75, 80, 90 ] matrix = atlas[ind] cell_types = atlas.obs['CellType'].values[ind] sa = Averages( aname, n_features_per_cell_type=2, n_features_overdispersed=5, n_pcs=9, ) sa.fit(matrix) for i in range(len(cell_types)): print('{:10s} {:10s}'.format(cell_types[i], sa.membership[i])) print((cell_types == sa.membership).mean()) assert ((cell_types == sa.membership).mean() >= 0.5)
def test_fetch_multiple(): af = AtlasFetcher() atlas = af.fetch_multiple_atlases(['Darmanis_2015', 'Enge_2017']) assert (isinstance(atlas, AnnData)) assert ('NumberOfCells' in atlas.obs.columns)
def test_fetch_Darmanis_2015_subsample(): af = AtlasFetcher() atlas = af.fetch_atlas('Darmanis_2015', kind='subsample') assert (isinstance(atlas, AnnData)) assert ('CellType' in atlas.obs.columns)
def test_fetch_Darmanis_2015_subsample(): af = AtlasFetcher() atlas = af.fetch_atlas('Darmanis_2015', kind='subsample') assert (isinstance(atlas, dict)) assert ('counts' in atlas) assert ('cell_types' in atlas)
def test_constructor(): af = AtlasFetcher()
def test_fetch_Darmanis_2015(): af = AtlasFetcher() atlas = af.fetch_atlas('Darmanis_2015') assert (isinstance(atlas, dict)) assert ('counts' in atlas) assert ('number_of_cells' in atlas)
def test_list_atlases(): af = AtlasFetcher() table = af.list_atlases() assert (table is not None)
def test_fetch_table(): af = AtlasFetcher() af.fetch_atlas_table() assert (af.atlas_table is not None)
def test_fetch_multiple(): af = AtlasFetcher() atlas = af.fetch_multiple_atlases(['Darmanis_2015', 'Enge_2017']) assert (isinstance(atlas, dict)) assert ('counts' in atlas) assert ('number_of_cells' in atlas)
def test_fetch_Darmanis_2015(): af = AtlasFetcher() atlas = af.fetch_atlas('Darmanis_2015') assert (isinstance(atlas, AnnData)) assert ('NumberOfCells' in atlas.obs.columns)