def nonstatic(features, labels, mode, params): with tf.device('/cpu:0'): word_vecs = embed.nonstatic(features) with tf.device('/gpu:0'): normed_word_vecs = normalize(word_vecs, mode) rnn = convolution(normed_word_vecs, features['INPUTLEN'], mode) fully_connected = dense(rnn, mode) outputs = output.output(fully_connected) return output.train_or_predict(features, labels, mode, params, outputs)
def nonstatic(features, labels, mode, params): with tf.device('/gpu:{}'.format(hypers.get_param('sg'))): word_vecs = embed.nonstatic(features) with tf.device('/gpu:{}'.format(hypers.get_param('sg'))): normed_word_vecs = normalize(word_vecs, mode) rnn = recurrent(normed_word_vecs, features['INPUTLEN'], mode) fully_connected = dense(rnn, mode) outputs = output.output(fully_connected) return output.train_or_predict(features, labels, mode, params, outputs)