def parse_args(): parser = argparse.ArgumentParser(description='Train the SZO nowcasting model') parser.add_argument('--batch_size', dest='batch_size', help="batchsize of the training process", default=None, type=int) parser.add_argument('--cfg', dest='cfg_file', help='Optional configuration file', default=None, type=str) parser.add_argument('--save_dir', help='The saving directory', required=True, type=str) parser.add_argument('--ctx', dest='ctx', help='Running Context. E.g `--ctx gpu` or `--ctx gpu0,gpu1` or `--ctx cpu`', type=str, default='gpu') parser.add_argument('--resume', dest='resume', action='store_true', default=False) parser.add_argument('--resume_param_only', dest='resume_param_only', action='store_true', default=False) parser.add_argument('--lr', dest='lr', help='learning rate', default=None, type=float) parser.add_argument('--wd', dest='wd', help='weight decay', default=None, type=float) parser.add_argument('--grad_clip', dest='grad_clip', help='gradient clipping threshold', default=None, type=float) args = parser.parse_args() args.ctx = parse_ctx(args.ctx) if args.cfg_file is not None: cfg_from_file(args.cfg_file, target=cfg.MODEL) if args.batch_size is not None: cfg.MODEL.TRAIN.BATCH_SIZE = args.batch_size if args.lr is not None: cfg.MODEL.TRAIN.LR = args.lr if args.wd is not None: cfg.MODEL.TRAIN.WD = args.wd if args.grad_clip is not None: cfg.MODEL.TRAIN.GRAD_CLIP = args.grad_clip if args.wd is not None: cfg.MODEL.TRAIN.WD = args.wd cfg.MODEL.SAVE_DIR = args.save_dir logging.info(args) return args
def parse_args(): parser = argparse.ArgumentParser( description='Train the Meteotn nowcasting model') parser.add_argument('--batch_size', dest='batch_size', help="batchsize of the training process", default=None, type=int) parser.add_argument('--cfg', dest='cfg_file', help='Configuration file', required=True, type=str) parser.add_argument('--save_dir', help='The saving directory', required=True, type=str) parser.add_argument( '--data_dir', help= 'The data directory with hdf_archives folder, hdf_metadata.csv and mask.png', required=True, type=str) parser.add_argument( '--data_csv', help= 'alternate metadata CSV file (default: [data_dir]/hdf_metadata.csv)', default=None, type=str) parser.add_argument( '--date_start', help='Start date to filter the sequences (e.g. 2010-12-31)', default=None, type=lambda s: datetime.strptime(s, '%Y-%m-%d')) parser.add_argument( '--date_end', help='End date to filter the sequences (e.g. 2016-12-31)', default=None, type=lambda s: datetime.strptime(s, '%Y-%m-%d')) parser.add_argument( '--ctx', default='cpu', help='Running Context. (default: %(default)s): `--ctx gpu` ' 'or `--ctx gpu0,gpu1` for GPU(s). `--ctx cpu` for CPU') parser.add_argument('--threshold', dest='threshold', help='rainfall filter threshold (default 0.28)', default=None, type=float) args = parser.parse_args() args.ctx = parse_ctx(args.ctx) if args.cfg_file is not None: cfg_from_file(args.cfg_file, target=cfg.MODEL) if args.batch_size is not None: cfg.MODEL.TRAIN.BATCH_SIZE = args.batch_size if args.threshold is not None: cfg.HKO.ITERATOR.FILTER_RAINFALL_THRESHOLD = float(args.threshold) cfg.MODEL.SAVE_DIR = args.save_dir logging.info(args) return args
def parse_args(): parser = argparse.ArgumentParser( description= 'Generate Predictions using TrajGRU model on TAASRAD19 dataset.') parser.add_argument('--model_cfg', required=True, help='Model Configuration file (yaml)') parser.add_argument('--model_dir', required=True, help='Folder with model weights') parser.add_argument('--model_iter', required=True, type=int, default=99999, help='Model itartion to load (default: %(default)s)') parser.add_argument( '--data_dir', help= 'The data directory with hdf_archives folder, hdf_metadata.csv and mask.png', required=True, type=str) parser.add_argument('--save_dir', default='.', help='Output folder for npz files') parser.add_argument('--batch_size', type=int, default=1, help='Batch size (default: %(default)s)') parser.add_argument( '--ctx', default='cpu', help='Running Context. (default: %(default)s): `--ctx gpu` ' 'or `--ctx gpu0,gpu1` for GPU(s). `--ctx cpu` for CPU') parser.add_argument( '--data_csv', default=None, help= 'alternate metadata CSV file (default: [data_dir]/hdf_metadata.csv)') parser.add_argument( '--date_start', help='Start date to filter the sequences (e.g. 2017-01-01)', default=None, type=lambda s: datetime.strptime(s, '%Y-%m-%d')) parser.add_argument( '--date_end', help='End date to filter the sequence (e.g. 2017-03-01)', default=None, type=lambda s: datetime.strptime(s, '%Y-%m-%d')) args = parser.parse_args() args.ctx = parse_ctx(args.ctx) logging.info(args) return args
def parse_args(): parser = argparse.ArgumentParser( description='Test the MovingMNIST++ dataset') parser.add_argument('--batch_size', dest='batch_size', help="batchsize of the testing process", default=None, type=int) parser.add_argument('--cfg', dest='cfg_file', help='Testing configuration file', default=None, type=str) parser.add_argument('--load_dir', help='The loading directory', default=None, type=str) parser.add_argument('--load_iter', help='The loading iterator', default=None, type=int) parser.add_argument('--save_dir', help='The saving directory', required=True, type=str) parser.add_argument( '--ctx', dest='ctx', help= 'Running Context. E.g `--ctx gpu` or `--ctx gpu0,gpu1` or `--ctx cpu`', type=str, default='gpu') args = parser.parse_args() args.ctx = parse_ctx(args.ctx) if args.cfg_file is not None: cfg_from_file(args.cfg_file, target=cfg) if args.load_dir is not None: cfg.MODEL.LOAD_DIR = args.load_dir if args.load_iter is not None: cfg.MODEL.LOAD_ITER = args.load_iter cfg.MODEL.SAVE_DIR = args.save_dir logging.info(args) return args
def parse_args(): parser = argparse.ArgumentParser(description='Test the HKO nowcasting model') parser.add_argument('--cfg', dest='cfg_file', help='Optional configuration file', type=str) parser.add_argument('--load_dir', help='The directory to load the model', default=None, type=str) parser.add_argument('--load_iter', help='The iterator to load', default=-1, type=int) parser.add_argument('--save_dir', help='The saving directory', required=True, type=str) parser.add_argument('--ctx', dest='ctx', help='Running Context. E.g `--ctx gpu` or `--ctx gpu0,gpu1` or `--ctx cpu`', type=str, default='gpu') parser.add_argument('--finetune', dest='finetune', help='Whether to do online finetuning', default=None, type=int) parser.add_argument('--finetune_min_mse', dest='finetune_min_mse', help='Minimum error for finetuning', default=None, type=float) parser.add_argument('--mode', dest='mode', help='Whether to used fixed setting or online setting', required=True, type=str) parser.add_argument('--dataset', dest='dataset', help='Whether to used the test set or the validation set', default="test", type=str) parser.add_argument('--lr', dest='lr', help='learning rate', default=None, type=float) parser.add_argument('--wd', dest='wd', help='weight decay', default=None, type=float) parser.add_argument('--grad_clip', dest='grad_clip', help='gradient clipping threshold', default=None, type=float) args = parser.parse_args() args.ctx = parse_ctx(args.ctx) if args.cfg_file is not None: cfg_from_file(args.cfg_file, target=cfg.MODEL) if args.load_dir is not None: cfg.MODEL.LOAD_DIR = args.load_dir if args.load_iter != -1: cfg.MODEL.LOAD_ITER = args.load_iter if args.lr is not None: cfg.MODEL.TEST.ONLINE.LR = args.lr if args.wd is not None: cfg.MODEL.TEST.ONLINE.WD = args.wd if args.grad_clip is not None: cfg.MODEL.TEST.ONLINE.GRAD_CLIP = args.grad_clip if args.mode is not None: cfg.MODEL.TEST.MODE = args.mode if args.finetune is not None: cfg.MODEL.TEST.FINETUNE = (args.finetune != 0) if args.finetune_min_mse is not None: cfg.MODEL.TEST.ONLINE.FINETUNE_MIN_MSE = args.finetune_min_mse cfg.MODEL.SAVE_DIR = args.save_dir logging.info(args) return args
def parse_args(): parser = argparse.ArgumentParser( description="Test the SST nowcasting model") parser.add_argument("--cfg", dest="cfg_file", help="Optional configuration file", type=str) parser.add_argument("--load_dir", help="The directory to load the model", default=None, type=str) parser.add_argument("--load_iter", help="The iterator to load", default=-1, type=int) parser.add_argument("--save_dir", help="The saving directory", required=True, type=str) parser.add_argument( "--ctx", dest="ctx", help= "Running Context. E.g `--ctx gpu` or `--ctx gpu0,gpu1` or `--ctx cpu`", type=str, default="gpu", ) parser.add_argument( "--finetune", dest="finetune", help="Whether to do online finetuning", default=None, type=int, ) parser.add_argument( "--finetune_min_mse", dest="finetune_min_mse", help="Minimum error for finetuning", default=None, type=float, ) parser.add_argument( "--mode", dest="mode", help="Whether to used fixed setting or online setting", required=True, type=str, ) parser.add_argument( "--dataset", dest="dataset", help="Whether to used the test set or the validation set", default="test", type=str, ) parser.add_argument("--lr", dest="lr", help="learning rate", default=None, type=float) parser.add_argument("--wd", dest="wd", help="weight decay", default=None, type=float) parser.add_argument( "--grad_clip", dest="grad_clip", help="gradient clipping threshold", default=None, type=float, ) args = parser.parse_args() args.ctx = parse_ctx(args.ctx) if args.cfg_file is not None: cfg_from_file(args.cfg_file, target=cfg.MODEL) if args.load_dir is not None: cfg.MODEL.LOAD_DIR = args.load_dir if args.load_iter != -1: cfg.MODEL.LOAD_ITER = args.load_iter if args.lr is not None: cfg.MODEL.TEST.ONLINE.LR = args.lr if args.wd is not None: cfg.MODEL.TEST.ONLINE.WD = args.wd if args.grad_clip is not None: cfg.MODEL.TEST.ONLINE.GRAD_CLIP = args.grad_clip if args.mode is not None: cfg.MODEL.TEST.MODE = args.mode if args.finetune is not None: cfg.MODEL.TEST.FINETUNE = args.finetune != 0 if args.finetune_min_mse is not None: cfg.MODEL.TEST.ONLINE.FINETUNE_MIN_MSE = args.finetune_min_mse cfg.MODEL.SAVE_DIR = args.save_dir logging.info(args) return args
def parse_args(): parser = argparse.ArgumentParser( description="Train the SST nowcasting model") parser.add_argument( "--batch_size", dest="batch_size", help="batchsize of the training process", default=None, type=int, ) parser.add_argument( "--cfg", dest="cfg_file", help="Optional configuration file", default=None, type=str, ) parser.add_argument("--save_dir", help="The saving directory", required=True, type=str) parser.add_argument( "--ctx", dest="ctx", help= "Running Context. E.g `--ctx gpu` or `--ctx gpu0,gpu1` or `--ctx cpu`", type=str, default="gpu", ) parser.add_argument("--lr", dest="lr", help="learning rate", default=None, type=float) parser.add_argument("--wd", dest="wd", help="weight decay", default=None, type=float) parser.add_argument( "--grad_clip", dest="grad_clip", help="gradient clipping threshold", default=None, type=float, ) args = parser.parse_args() args.ctx = parse_ctx(args.ctx) if args.cfg_file is not None: cfg_from_file(args.cfg_file, target=cfg.MODEL) if args.batch_size is not None: cfg.MODEL.TRAIN.BATCH_SIZE = args.batch_size if args.lr is not None: cfg.MODEL.TRAIN.LR = args.lr if args.wd is not None: cfg.MODEL.TRAIN.WD = args.wd if args.grad_clip is not None: cfg.MODEL.TRAIN.GRAD_CLIP = args.grad_clip if args.wd is not None: cfg.MODEL.TRAIN.WD = args.wd cfg.MODEL.SAVE_DIR = args.save_dir logging.info(args) return args