def test_report(self): enter_crit = criteria.Above(self.symbol.close, 25.88) exit_crit = criteria.BarsSinceLong(self.symbol, 1) enter_crit_group = criteria_group.CriteriaGroup([enter_crit], Long(), self.symbol) exit_crit_group = criteria_group.CriteriaGroup([exit_crit], LongExit(), self.symbol) tp = trading_profile.TradingProfile(10000, trading_amount.StaticAmount(5000), trading_fee.StaticFee(0)) strat = strategy.Strategy(self.d, [enter_crit_group, exit_crit_group], tp) strat.simulate() report_overview = strat.report.overview() self.assertAlmostEqual(report_overview['net_profit'], 7.68) self.assertAlmostEqual(report_overview['average_gains'], 0.153256704981) enter_crit = criteria.Above(self.symbol.close, 25.88) exit_crit = criteria.BarsSinceShort(self.symbol, 1) enter_crit_group = criteria_group.CriteriaGroup([enter_crit], Short(), self.symbol) exit_crit_group = criteria_group.CriteriaGroup([exit_crit], ShortExit(), self.symbol) tp = trading_profile.TradingProfile(10000, trading_amount.StaticAmount(5000), trading_fee.StaticFee(0)) strat = strategy.Strategy(self.d, [enter_crit_group, exit_crit_group], tp) strat.simulate() report_overview = strat.report.overview() self.assertAlmostEqual(report_overview['net_profit'], -7.68) self.assertAlmostEqual(report_overview['average_gains'], -0.15325670498086685) enter_crit = criteria.Above(self.symbol.close, 50) exit_crit = criteria.BarsSinceLong(self.symbol, 1) enter_crit_group = criteria_group.CriteriaGroup([enter_crit], Long(), self.symbol) exit_crit_group = criteria_group.CriteriaGroup([exit_crit], LongExit(), self.symbol) tp = trading_profile.TradingProfile(10000, trading_amount.StaticAmount(5000), trading_fee.StaticFee(0)) strat = strategy.Strategy(self.d, [enter_crit_group, exit_crit_group], tp) strat.simulate() pretty_overview = strat.report.pretty_overview() no_trades = pretty_overview.split('\n')[0] self.assertEqual(no_trades, 'No trades')
def test_simple_ti_crit_strategy(self): sma2 = technical_indicator.SMA(self.symbol.close, 2) sma3 = technical_indicator.SMA(self.symbol.close, 3) self.d.add_technical_indicator(sma2) self.d.add_technical_indicator(sma3) enter_crit1 = criteria.Above(sma2, sma3) enter_crit2 = criteria.Below(sma3, sma2) enter_crit3 = criteria.InRange(sma2, 25, 26) enter_crit4 = criteria.CrossingAbove(sma2, sma3) enter_crit5 = criteria.CrossingBelow(sma2, sma3) exit_crit1 = criteria.BarsSinceLong(self.symbol, 2) exit_crit2 = criteria.Equals(sma2, sma3) enter_crit_group1 = criteria_group.CriteriaGroup( [enter_crit1, enter_crit2], Long(), self.symbol) enter_crit_group2 = criteria_group.CriteriaGroup( [enter_crit1, enter_crit2], Short(), self.symbol) enter_crit_group3 = criteria_group.CriteriaGroup( [enter_crit3, enter_crit4, enter_crit5], Long(), self.symbol) exit_crit_group1 = criteria_group.CriteriaGroup([exit_crit1], LongExit(), self.symbol) exit_crit_group2 = criteria_group.CriteriaGroup([exit_crit2], LongExit(), self.symbol) tp = trading_profile.TradingProfile(10000, trading_amount.StaticAmount(5000), trading_fee.StaticFee(0)) strat = strategy.Strategy(self.d, [ enter_crit_group1, enter_crit_group2, enter_crit_group3, exit_crit_group1, exit_crit_group2 ], tp) strat.simulate() overview = strat.report.overview() self.assertEqual(overview['trades'], 0)
def test_simple_long_strategy(self): enter_crit = criteria.Above(self.symbol.close, 25.88) exit_crit = criteria.BarsSinceLong(self.symbol, 2) enter_crit_group = criteria_group.CriteriaGroup([enter_crit], Long(), self.symbol) exit_crit_group = criteria_group.CriteriaGroup([exit_crit], LongExit(), self.symbol) tp = trading_profile.TradingProfile(10000, trading_amount.StaticAmount(5000), trading_fee.StaticFee(0)) strat = strategy.Strategy(self.d, [enter_crit_group, exit_crit_group], tp) repr_string = 'Strategy(dataset=Dataset(symbol_list=[MSFT], data_connection=DummyDataConnection(), start_datetime=None, end_datetime=None, periods=0, granularity=None), criteria_groups=[CriteriaGroup(criteria_list=[Above_MSFT_Close_25.88_1, Not_InMarket(symbol=MSFT)], action=long, symbol=MSFT), CriteriaGroup(criteria_list=[BarsSinceLong_MSFT_2_None, IsLong_MSFT], action=longexit, symbol=MSFT)], trading_profile=TradingProfile(capital=10000, trading_amount=StaticAmount(amount=5000, round_up=False), trading_fee=StaticFee(fee=0), slippage=0.0)' self.assertEquals(strat.__repr__(), repr_string) strat.simulate() report_overview = strat.report.overview() self.assertAlmostEqual(strat.realtime_data_frame.iloc[4]['PL_MSFT'], report_overview['net_profit']) self.assertTrue( np.isnan(strat.realtime_data_frame.iloc[0]['CHANGE_PERCENT_MSFT'])) self.assertTrue( np.isnan(strat.realtime_data_frame.iloc[5]['CHANGE_VALUE_MSFT'])) self.assertEqual(strat.realtime_data_frame.iloc[0]['ACTIONS_MSFT'], 0) self.assertEqual(strat.realtime_data_frame.iloc[1]['ACTIONS_MSFT'], 1) self.assertEqual(strat.realtime_data_frame.iloc[2]['ACTIONS_MSFT'], 0) self.assertEqual(strat.realtime_data_frame.iloc[3]['ACTIONS_MSFT'], 0) self.assertEqual(strat.realtime_data_frame.iloc[4]['ACTIONS_MSFT'], -1) self.assertEqual(strat.realtime_data_frame.iloc[5]['ACTIONS_MSFT'], 0) self.assertEqual(strat.realtime_data_frame.iloc[0]['STATUS_MSFT'], 0) self.assertEqual(strat.realtime_data_frame.iloc[1]['STATUS_MSFT'], 1) self.assertEqual(strat.realtime_data_frame.iloc[2]['STATUS_MSFT'], 1) self.assertEqual(strat.realtime_data_frame.iloc[3]['STATUS_MSFT'], 1) self.assertEqual(strat.realtime_data_frame.iloc[4]['STATUS_MSFT'], 0) self.assertEqual(report_overview['trades'], 1) self.assertEqual(report_overview['winning_trades'], 0) self.assertEqual(report_overview['losing_trades'], 1) self.assertEqual(report_overview['lacking_capital'], 0) self.assertEqual(report_overview['gross_profit'], 0) self.assertEqual(report_overview['gross_loss'], report_overview['net_profit']) self.assertEqual(report_overview['ongoing_trades'], 0) self.assertEqual(report_overview['average_trading_amount'], 5003.5199999999995) self.assertEqual(report_overview['profitability'], 0) pretty_overview_string = 'Trades:\nMSFT\nTrade(datetime=2010-06-02 00:00:00, action=LONG, symbol=MSFT, price=26.06, shares=192.0, money=5003.52, fee=0, slippage=0.0)\nTrade(datetime=2010-06-07 00:00:00, action=LONG_EXIT, symbol=MSFT, price=25.82, shares=192.0, money=4957.44, fee=0, slippage=0.0)\nProfitability: 0.0\n# Trades: 1\nNet Profit: -46.08\nGross Profit: 0.0\nGross Loss: -46.08\nWinning Trades: 0\nLosing Trades: 1\nSharpe Ratio: -6.0\nAvg. Trading Amount: 5003.52\nAvg. Fees: 0.0\nAvg. Slippage: 0.0\nAvg. Gains: -0.929512006197\nAvg. Winner: 0.0\nAvg. Loser: -0.929512006197\nAvg. Bars: 3.0\nTotal Fees: 0.0\nTotal Slippage: 0.0\nTrades Lacking Capital: 0\nOngoing Trades: 0' self.assertEqual(strat.report.pretty_overview(), pretty_overview_string) with self.assertRaises(report.InvalidExit): strat.report.long_exit(None, None, 'MSFT') with self.assertRaises(report.InvalidExit): strat.report.short_exit(None, None, 'MSFT')
def test_bars_since_action(self): crit = criteria.BarsSinceAction(self.one, Long(), 2) self.assertEquals(str(crit), 'BarsSinceAction(symbol=ONE, action=1, periods=2, condition=NONE)') crit = criteria.BarsSinceLongExit(self.one, 3) self.assertTrue(crit.apply(self.data)) crit = criteria.BarsSinceShortExit(self.one, 2) self.assertFalse(crit.apply(self.data)) crit = criteria.BarsSinceShortExit(self.one, 1) self.assertFalse(crit.apply(self.data)) crit = criteria.BarsSinceShortExit(self.one, 0) self.assertTrue(crit.apply(self.data)) crit = criteria.BarsSinceLong(self.one, 4) self.assertFalse(crit.apply(self.data)) crit = criteria.BarsSinceLong(self.one, 5) self.assertTrue(crit.apply(self.data)) crit = criteria.BarsSinceLong(self.one, 6) self.assertFalse(crit.apply(self.data)) crit = criteria.BarsSinceShortExit(self.one, 0, 'under') self.assertFalse(crit.apply(self.data)) crit = criteria.BarsSinceShortExit(self.one, 1, 'under') self.assertTrue(crit.apply(self.data)) crit = criteria.BarsSinceShortExit(self.one, 2, 'under') self.assertTrue(crit.apply(self.data)) crit = criteria.BarsSinceLong(self.one, 5, 'under') self.assertFalse(crit.apply(self.data)) crit = criteria.BarsSinceLong(self.one, 6, 'under') self.assertTrue(crit.apply(self.data)) crit = criteria.BarsSinceLong(self.one, 7, 'under') self.assertTrue(crit.apply(self.data)) crit = criteria.BarsSinceShortExit(self.one, 1, 'over') self.assertFalse(crit.apply(self.data)) crit = criteria.BarsSinceShortExit(self.one, 0, 'over') self.assertFalse(crit.apply(self.data)) crit = criteria.BarsSinceShort(self.one, 0, 'over') self.assertTrue(crit.apply(self.data)) crit = criteria.BarsSinceLong(self.one, 4, 'over') self.assertTrue(crit.apply(self.data)) crit = criteria.BarsSinceLong(self.one, 5, 'over') self.assertFalse(crit.apply(self.data)) crit = criteria.BarsSinceLong(self.one, 6, 'over') self.assertFalse(crit.apply(self.data))
import datetime from nowtrade import symbol_list, data_connection, dataset, technical_indicator, \ criteria, criteria_group, trading_profile, trading_amount, \ trading_fee, strategy, figures from nowtrade.action import Long, Short, LongExit, ShortExit dc = data_connection.YahooConnection() sl = symbol_list.SymbolList(['AAPL']) symbol = sl.get('AAPL') start = datetime.datetime(2010, 01, 01) end = datetime.datetime(2015, 01, 01) d = dataset.Dataset(sl, dc, start, end) d.load_data() adx28 = technical_indicator.ADX(symbol, 28) d.add_technical_indicator(adx28) # Enter Long enter_crit_long1 = criteria.Above(adx28.value, 30) enter_crit_long2 = criteria.Above(adx28.minus_di, 30) enter_crit_long3 = criteria.Below(adx28.plus_di, 20) # Exit Long exit_crit_long = criteria.BarsSinceLong(symbol, 10) # Exit 10 days later # Criteria Groups enter_crit_group = criteria_group.CriteriaGroup([enter_crit_long1, enter_crit_long2, enter_crit_long3], Long(), symbol) exit_crit_group = criteria_group.CriteriaGroup([exit_crit_long], LongExit(), symbol) # Strategy tp = trading_profile.TradingProfile(100000, trading_amount.StaticAmount(20000), trading_fee.StaticFee(10)) strat = strategy.Strategy(d, [enter_crit_group, exit_crit_group], tp) strat.simulate() print strat.report.pretty_overview()
test_dataset.add_technical_indicator(random_forest) # Our random forest will spit out a prediction price for 5 bars in the future # We still need a threshold to determine whether or not we want to enter the trade # Let's define a TI that is $5 higher than the random forest's prediction threshold_above = technical_indicator.Addition(random_forest.value, 5) test_dataset.add_technical_indicator(threshold_above) # And $5 lower than the neural network's prediction threshold_below = technical_indicator.Subtraction(random_forest.value, 5) test_dataset.add_technical_indicator(threshold_below) # Criteria # Current price is below the threshold of our random forest's prediction price enter_crit_long = criteria.Below(symbol.close, threshold_below.value) # Current price is above the threshold of our random forest's prediction price enter_crit_short = criteria.Above(symbol.close, threshold_above.value) # Exit after 5 days - as per the random forest's build parameters exit_crit_long = criteria.BarsSinceLong(symbol, 5) exit_crit_short = criteria.BarsSinceShort(symbol, 5) # Criteria Groups enter_crit_group1 = criteria_group.CriteriaGroup([enter_crit_long], Long(), symbol) enter_crit_group2 = criteria_group.CriteriaGroup([enter_crit_short], Short(), symbol) exit_crit_group1 = criteria_group.CriteriaGroup([exit_crit_long], LongExit(), symbol) exit_crit_group2 = criteria_group.CriteriaGroup([exit_crit_short], ShortExit(), symbol) # Trading Profile tp = trading_profile.TradingProfile(100000, trading_amount.StaticAmount(10000), trading_fee.StaticFee(5)) # Strategy strat = strategy.Strategy(