Пример #1
0
def make_test_globals():
    """Prepare global objects used in the doctests"""
    print("Prepare doctest globals", flush=True)
    # Test using a small data sample of 10000 random integers 0-255
    # with 16 dimensions
    hsne_data = np.random.randint(256, size=(10000, 16))
    tsne_data = np.random.randint(256, size=(2000, 16))
    # Create a sample hsne with 3 levels and
    # save this to a sample file
    hsne = nptsne.HSne(True)
    hsne.create_hsne(hsne_data, 3)
    file_name = "rnd10000x16.hsne"
    hsne.save(file_name)
    top_analysis = nptsne.hsne_analysis.Analysis(hsne, nptsne.hsne_analysis.EmbedderType.CPU)

    print("End prepare doctest globals", flush=True)
    return {
        "sample_hsne": hsne,
        "sample_analysis": top_analysis,
        "sample_scale0": hsne.get_scale(0),
        "sample_scale1": hsne.get_scale(1),
        "sample_scale2": hsne.get_scale(2),
        "sample_hsne_file": file_name,
        "sample_hsne_data": hsne_data,
        "sample_tsne_data": tsne_data,
        "sample_texture_tsne": nptsne.TextureTsne(),
        "sample_texture_tsne_extended": nptsne.TextureTsneExtended()
    }
Пример #2
0
def step_impl(context):
    context.tsne = nptsne.TextureTsneExtended(False)
Пример #3
0
    'data': mnist_raw['data'].T,
    'target': mnist_raw['label'][0],
    'COL_NAMES': ['label', 'data']
}

colors = [
    '#EE3333', '#FF9900', '#FFEE00', '#AACC11', '#44AA77', '#0099EE',
    '#0066BB', '#443388', '#992288', '#EE0077'
]
# norm = mcolors.Normalize(vmin=0, vmax=9)

# mcolors.ListedColormap(colors)
rc('lines', linewidth=2)
rc('lines', markersize=1)

tsne = nptsne.TextureTsneExtended(False)
embeddings = []
if tsne.init_transform(mnist['data']):
    print('Init succeeded')

for i in range(20):
    plt.figure(i + 1)
    start = timer()
    # reduce the forces from iteration 1000
    if i == 10:
        tsne.start_exaggeration_decay()
        print(f'exaggeration stopping at {tsne.decay_started_at}')
    embedding = tsne.run_transform(verbose=False, iterations=100)
    end = timer()
    print(f'got embedding in {end - start}')
    print(f'iteration count {tsne.iteration_count}')
umap_embed = umap.UMAP().fit_transform(subData)

print(umap_embed.shape)
plt.figure(40)
print(subLabel)
print(umap_embed)
plt.scatter(umap_embed[..., 0],
            umap_embed[..., 1],
            c=subLabel,
            cmap=mcolors.ListedColormap(colors),
            facecolors='None',
            marker='o')
plt.draw()
plt.savefig(f'testexum_00.png')

tsne = nptsne.TextureTsneExtended(verbose=True)

print(f'Init tSNE from umap, shape: {umap_embed.shape}')
if tsne.init_transform(subData, umap_embed):
    print('Init from umap succeeded')

step_size = 100
for i in range(20):
    plt.figure(i + 1)
    start = timer()
    exaggeration_iter = 100
    # reduce the forces from 1000
    if i == 10:
        tsne.start_exaggeration_decay()
        print(f'exaggeration stopping at {tsne.decay_started_at}')