def get_equity_price(symbol): scrip_id = symbol.upper() n = Nse() data = n.get_scrip_data(scrip_id) price, lastUpdateTime = n.get_data_for_key(data, 'lastPrice') print("Current LTP for {} is {} at time {} ".format( scrip_id, price, lastUpdateTime))
def get_open_price_equity(symbol): scrip_id = symbol.upper() n = Nse() data = n.get_scrip_data(scrip_id) price, lastUpdateTime = n.get_data_for_key(data, 'open') print("Open Price for {} is {} at time {} ".format(scrip_id, price, lastUpdateTime))
# for j in range(i,len(mn)): # x = mn[i][0],mn[j][0] # y = mn[i][1],mn[j][1]; # c+=1 # print(c) # plt.plot(x,y) plt.xlabel("date") plt.ylabel("price") plt.title(STOCK) plt.xticks(x, rotation='vertical') # Pad margins so that markers don't get clipped by the axes plt.margins(0.2) plt.show() plt.plot(maxdate, maxY) df.plot(x='CH_TIMESTAMP', y='CH_CLOSING_PRICE') db = Nse() fno = nse.Nse() fno_lot = fno.get_fno_lot_sizes(as_json=False) fno_list = list(fno_lot.keys()) global df, historic_data, x, y, mapping, mn, mx, maxY, minY, mindate, maxdate, closingPrice, STOCK for stk in fno_list: try: print("processing ... " + stk) getMaxMin(stk, True) except: print(stk)
from nse import Nse import time from nsetools import nse db = Nse() fno = nse.Nse() lis = fno.get_fno_lot_sizes(as_json=False) fno_lot = dict(lis) keys = list(fno_lot.keys()) print(keys) for key in keys[10:]: try: price = db.live(key)['lastPrice'] if price * lis[key] > 200000 and price * lis[key] < 500000: print(key.ljust(20), str(lis[key]).ljust(20), str(price).ljust(20), "{:,}".format(price * lis[key])) except: pass # time.sleep(1) # print(data)
from nse import Nse db = Nse() data = db.live("HDFCBANK") print(data) #Load OIL Brand Data. data = db.load('HDFCBANK') #Bar Grap Of Data Hdata = db.history("HDFCBANK","05-10-2020",'15-10-2020') print(Hdata)
def is_market_open(): n = Nse() market_status = n.get_market_status() print("Market is {} currently ".format(market_status))
def get_day_high_low(symbol): scrip_id = symbol.upper() n = Nse() data = n.get_scrip_data(scrip_id) low, high = n.get_day_high_low(data) print(" Days Low is {} and Days High is {} ".format(low, high))
def changeLastRunDate(lastRunDate): fh = open("lastRundate.txt", "w") fh.write(lastRunDate) fh.close() def getLastRunDate(): filename = 'lastRundate.txt' fh = open(filename, "r") return fh.read() if __name__ == '__main__': nse = Nse() count = 0 lastRunDate = getLastRunDate() while (count <= 10000): time.sleep(20) if count == 0: nse.download_bhavcopy(lastRunDate) print('lastRunDate is', lastRunDate) else: previousDate = getPreviousDate(lastRunDate) nse.download_bhavcopy(previousDate) lastRunDate = previousDate print('lastRunDate is', lastRunDate) count = count + 1 changeLastRunDate(lastRunDate)
import logging import json import re import six import time from nse import Nse from datetime import datetime, timedelta from dateutil import parser from utils import js_adaptor, byte_adaptor log = logging.getLogger('nse') logging.basicConfig(level=logging.DEBUG) def isHoliday(date): return date.isoweekday() > 5 def getPreviousDay(): currentDay = datetime.now().date() previousDay = currentDay - timedelta(days=1) return previousDay.strftime('%dth %b %Y') if __name__ == '__main__': nse = Nse() count = 0 yesterday = getPreviousDay() print('lastRunDate is', yesterday) nse.download_bhavcopy(yesterday)