Пример #1
0
def run(input_dir, output_dir, allow_api):
    """ Runs inference of the Scene Description Model on images located
    in the input_dir. Stores results in a .csv file located in the
    output_dir. If allowed, run() sends selected images to content
    moderation models of the Amazon Rekognition, Google Vision Cloud
    and Microsoft Computer Vision APIs. Images with the top
    prediction`s score below the API_THRESHOLD constant are sent to
    APIs. APIs` results are also stored in the output_dir.

    Parameters
    ----------
    input_dir : str
        Path to the dir with images to run inference on.
    output_dir : str
        Path to the dir where all results will be stored.
    allow_api : bool
        If True selected images are sent to the APIs.

    """
    print("[NSFW DETECTION] Loading model...")
    model = predict.load_model(MODEL_PATH)
    nsfw_classification = dict()
    imgs_for_api = set()

    try:
        nsfw_classification = predict.classify(model,
                                               input_dir,
                                               image_dim=NETWORK_INPUT_SIZE)

    except ValueError:
        print("[Error] Input directory does not contain any valid images")

    with open(os.path.join(output_dir, "moderate_image.csv"), "w") \
            as output_file:

        for img in nsfw_classification.keys():
            img_name = img[img.rfind('\\') + 1:]
            if (allow_api and
                    max(nsfw_classification[img].values()) < API_THRESHOLD):
                imgs_for_api.add(img_name)

            img_name = img[img.rfind('\\') + 1:]
            output = f"{img_name}"
            for cat, score in nsfw_classification[img].items():
                output += f",{cat}:{score:.2f}"

            output += "\n"
            output_file.write(output)

    print(f"[NSFW DETECTION] Analyzed {len(nsfw_classification)} images, "
          "results are stored in "
          f"{os.path.join(output_dir, 'moderate_image.csv')}")

    print(f"[NSFW DETECTION] Passing {len(imgs_for_api)} images for"
          " further analysis to APIs...")

    run_aws_api(imgs_for_api, input_dir, output_dir, "moderate_image")
    run_ms_api(imgs_for_api, input_dir, output_dir, "moderate_image")
    run_gg_api(imgs_for_api, input_dir, output_dir, "moderate_image")
    print("-------------------------------------------------------\n")
Пример #2
0
def guess_nsfw_info(image_path):
    """
    Guess NSFW content from an image with nsfw_model.

    :param image_path
    """
    try:
        model = predict.load_model(NSFW_MODEL)
        img_dict = predict.classify(model, image_path)[image_path]
        return (
            float(img_dict["p**n"]),
            float(img_dict["hentai"]),
            float(img_dict["sexy"]),
        )
    except Exception as error:
        logger.error(error, exc_info=True)
Пример #3
0
def image_data_convert(file_list, network, resize_method, include_top):
    print('画像から特徴量を抽出中…')
    output_features = []
    if network == 'nsfw':
        nsfw_model = predict.load_model('./nsfw.299x299.h5')
    if network == 'inception_resnet_v2':
        img_list = []
        for j in tqdm(range(len(file_list))):
            img_file = file_list[j]
            orig_img = Image.open('./thumbnails/' + img_file + '.jpg')
            resized_img = resize_image(orig_img, 299, 299, resize_method)
            img_list.append(resized_img)
        img_list = np.array(img_list)

        inputs = Input(shape=(299, 299, 3))
        model = InceptionResNetV2(include_top=include_top,
                                  weights='imagenet',
                                  input_tensor=inputs)
        output_features = model.predict(img_list)
        print("画像から特徴量への変換終了")
    elif network == 'mobilenet_v2':
        img_list = []
        for j in tqdm(range(len(file_list))):
            img_file = file_list[j]
            orig_img = Image.open('./thumbnails/' + img_file + '.jpg')
            resized_img = resize_image(orig_img, 224, 224, resize_method)
            img_list.append(resized_img)
        img_list = np.array(img_list)

        inputs = Input(shape=(224, 224, 3))
        model = MobileNetV2(include_top=include_top,
                            weights='imagenet',
                            input_tensor=inputs)  #一度include_topをtrueにしてテスト
        output_features = model.predict(img_list)
        print("画像から特徴量への変換終了")
    else:
        return None
    final_out = []
    for i in range(len(output_features)):
        final_out.append(output_features[i].flatten())
    final_out = np.array(final_out)
    return final_out
Пример #4
0
def check_nsfw(image_list):
    """
    :param image_list: list of image paths
    """
    # Painfully slow importing time
    from nsfw_detector import predict

    logger.info("Checking for NSFW content")
    for image in image_list:
        try:
            model = predict.load_model(NSFW_MODEL)
            img_dict = predict.classify(model, image)[image]
            nsfw_tuple = (
                float(img_dict["p**n"]),
                float(img_dict["hentai"]),
                float(img_dict["sexy"]),
            )
        except Exception as error:
            logger.error(error, exc_info=True)
            raise NSFWContent("Error guessing NSFW")

        logger.info(nsfw_tuple)
        if any(guessed > 0.2 for guessed in nsfw_tuple):
            raise NSFWContent("NSFW guessed from %s: %s", image, nsfw_tuple)
Пример #5
0
from nsfw_detector import predict
import os, fcntl
import time
import shutil
import random

import requests
from flask import Flask, render_template, request
import base64

model = predict.load_model('/Imgfit/ImageReview-v3/nsfw_model/nsfw.299x299.h5')
img_root = './images'


def getRandomSet(bits):
    num_set = [chr(i) for i in range(48, 58)]
    char_set = [chr(i) for i in range(97, 123)]
    total_set = num_set + char_set
    value_set = "".join(random.sample(total_set, bits))
    return value_set


def predict_img(imgpath):
    name_rand = imgpath.split('/')[2].split('.')[0] + '.txt'
    print('outname', name_rand)
    try:
        print('start')
        time.sleep(float(random.randint(0, 5) / 10))
        res = predict.classify(model, imgpath)
        print(res)  # save
        res2 = res[imgpath]
Пример #6
0
def image_to_nsfw_score(file_list,
                        batch_size=100,
                        use_nsfw_score=True,
                        meta_path='view_data',
                        image_path='thumbnails'):
    output_features = []
    pd_output_features = {}
    pd_output_features['nsfw_score_hentai'] = []
    pd_output_features['nsfw_score_porn'] = []
    pd_output_features['nsfw_score_sexy'] = []
    if use_nsfw_score:
        nsfw_model = predict.load_model('./nsfw_mobilenet2.224x224.h5')
        for i in range(-(-len(file_list) // batch_size)):
            print('画像のNSFWスコアを計算中...{0}/{1}'.format(
                i + 1, -(-len(file_list) // batch_size)))
            if i == -(-len(file_list) // batch_size) - 1:
                batch = file_list[batch_size * i:]
            else:
                batch = file_list[batch_size * i:batch_size * i + batch_size]
            image_paths = [
                image_path + '/' + video_id + '.jpg' for video_id in batch
            ]
            video_ids = [video_id for video_id in batch]
            #既にデータファイル側に記録されていればそれを使う
            data_used_nsfw = 0
            for video_id in batch:
                with open(meta_path + '/{}'.format(video_id) + '.json',
                          mode='r',
                          encoding='utf-8') as f:
                    json_data = json.load(f)
                if 'hentai' in json_data:
                    data_used_nsfw += 1
            if data_used_nsfw == len(batch):
                nsfw_score_dict = {}
                for video_id in batch:
                    nsfw_score_dict[image_path + '/' + video_id + '.jpg'] = {
                        'hentai': json_data['hentai'],
                        'p**n': json_data['p**n'],
                        'sexy': json_data['sexy']
                    }
            else:
                nsfw_score_dict = predict.classify(
                    nsfw_model, image_paths)  #GantMan氏のモデルを使用。
            one_batch_features = []
            #時間だけが異なるデータが重複しているのでその対策
            duplicating = {}
            for j in batch:
                duplicating[j] = batch.count(j)
            for key in nsfw_score_dict:
                video_id = video_ids[image_paths.index(key)]
                one_video_feature = []
                #後で利用できるようにjsonファイルを更新しておく
                with open(meta_path + '/{}'.format(video_id) + '.json',
                          mode='r',
                          encoding='utf-8') as f:
                    json_data = json.load(f)
                if 'hentai' not in json_data:
                    json_data['hentai'] = nsfw_score_dict[key]['hentai']
                if 'p**n' not in json_data:
                    json_data['p**n'] = nsfw_score_dict[key]['p**n']
                if 'sexy' not in json_data:
                    json_data['sexy'] = nsfw_score_dict[key]['sexy']
                with open(meta_path + '/{}'.format(video_id) + '.json',
                          mode='w',
                          encoding='utf-8') as f:
                    json.dump(json_data, f, ensure_ascii=False, indent=4)
                #それぞれ0~1の間でその種類に属する確率を表している数値。
                one_video_feature.append(
                    nsfw_score_dict[key]['hentai'])  #性的なイラスト
                one_video_feature.append(nsfw_score_dict[key]['p**n'])  #実写のポルノ
                one_video_feature.append(
                    nsfw_score_dict[key]['sexy'])  #ポルノというほどではないがやや性的な画像
                #そのほか、'drawings'(健全なアニメ等のイラスト), 'neutral'(普通の実写画像)というNSFWではない要素もあるが、
                #今回は必要ないので無視。
                for k in range(duplicating[video_id]):
                    one_batch_features.append(one_video_feature)
                    pd_output_features['nsfw_score_hentai'].append(
                        nsfw_score_dict[key]['hentai'])
                    pd_output_features['nsfw_score_porn'].append(
                        nsfw_score_dict[key]['p**n'])
                    pd_output_features['nsfw_score_sexy'].append(
                        nsfw_score_dict[key]['sexy'])
            output_features.extend(one_batch_features)
    output_features = np.array(output_features)
    return output_features, pd_output_features