def generateIndividual(self): individual = Individual() individual.features = [] # HERE WE HANDLE THE SEARCH SPACE # for i in range(self.n): # individual.features.append(random.random()) react_temp = random.uniform(pbr_props.temperature_lower_bound, pbr_props.temperature_upper_bound) react_pres = random.uniform(pbr_props.pressure_lower_bound, pbr_props.pressure_upper_bound) react_buoh = random.uniform(pbr_props.mole_flows_lower_bound, pbr_props.mole_flows_upper_bound) react_acac = random.uniform(pbr_props.mole_flows_lower_bound, pbr_props.mole_flows_upper_bound) individual.features.append(react_temp) individual.features.append(react_pres) individual.features.append(react_buoh) individual.features.append(react_acac) individual.dominates = functools.partial(self.__dominates, individual1=individual) # self.calculate_objectives(individual) return individual
def generateIndividual(self): individual = Individual() individual.features = [] for i in range(self.n): individual.features.append(random.uniform(self.bounds[i][0], self.bounds[i][1])) self.calculate_objectives(individual) individual.dominates = functools.partial(self.__dominates, individual1=individual) return individual
def generateIndividual(self): individual = Individual() individual.features = [] for i in range(30): individual.features.append(random.random()) individual.dominates = functools.partial(self.__dominates, individual1=individual) self.calculate_objectives(individual) return individual
def generate_individual(self): xy = CLUSTERING(self.all_data_matrix, self.individual_no) centroids, label, no_of_cluster = xy.kmeans( ) #Generate each individual using k-means clustering individual = Individual() individual.no_of_Cluster = no_of_cluster individual.labels = label #individual.BHI = self.zdt_definitions.BHI(individual) individual.features = [] for sub_list in centroids: for feature in sub_list: individual.features.append(feature) print(individual.no_of_Cluster) return individual
def generate_individual(self): """ Parameters ---------- Returns ------- individual a new random portfolio """ individual = Individual() individual.features = self.init_population(self.portfolio_size, 1, self.Q, self.Q_rfa, self.C)[0] return individual
def generateIndividual(self, new_msr, new_rv, new_bisize, nsol_K, nsol_label, nsol): individual = Individual() individual.features = [] individual.ob1 = new_msr individual.ob2 = new_rv individual.ob3 = new_bisize individual.K = nsol_K individual.label = nsol_label for i in range(len(nsol)): individual.features.append(nsol[i]) individual.dominates = functools.partial(self.__dominates, individual1=individual) self.calculate_objectives(individual) return individual
def generate_individual(self): individual = Individual() individual.id = ''.join(random.choice(string.ascii_uppercase + string.digits) for _ in range(10)) individual.features = [random.uniform(*x) for x in self.variables_range] hyperparameters = ['criterion', 'max_depth', 'min_samples_split', 'max_leaf_nodes', 'class_weight'] individual.features = od(zip(hyperparameters, individual.features)) individual.features = decode(self.variables_range, **individual.features) individual.creation_mode = "inicialization" return individual
def generateIndividual(self): xy = FCM(self.all_data_matrix, self.individual_no) center, u, d, fpc, no_of_cluster, label = xy.FuzzyCMeans( ) #Generate each individual using Fuzzy C means individual = Individual() individual.partition_matrix = u individual.distance_matrix = d individual.no_of_Cluster = no_of_cluster individual.fpc = fpc individual.labels = label #individual.BHI = self.zdt_definitions.BHI(individual) individual.features = [] for sub_list in center: for feature in sub_list: individual.features.append(feature) #print individual.no_of_Cluster , individual.features individual.dominates = functools.partial(self.__dominates, individual1=individual) self.calculate_objectives(individual) return individual
def generateIndividual(self): individual = Individual() individual.vardim = self.vardim individual.bound = self.bound individual.hos_opt = self.hos_opt ##-----------------初始化待优化的医院---------------## '''初始化随机生成染色体(多个基因的list),长度为个体的维度''' len = self.vardim rnd = np.random.random(size=len) #n维0-1之间的向量 individual.features = np.zeros(len) #长尾为n的0维向量 #在上限、下限之间生成染色体的值 for i in xrange(0, len): individual.features[i] = int(self.bound[0, i] + (self.bound[1, i] - self.bound[0, i]) * rnd[i]) #计算目标函数值 self.calculate_objectives(individual) #进行支配非支配的计算 individual.dominates = functools.partial(self.__dominates, individual1=individual) return individual
def generate_default_individual_entropy(self): individual = Individual() individual.id = ''.join( random.choice(string.ascii_uppercase + string.digits) for _ in range(10)) individual.features = [1, None, 2, None, None] hyperparameters = [ 'criterion', 'max_depth', 'min_samples_split', 'max_leaf_nodes', 'class_weight' ] #individual.features = [1, None, 1, 0.00001, None] #hyperparameters = ['criterion','max_depth', 'min_samples_leaf', 'min_impurity_decrease', 'class_weight'] individual.features = od(zip(hyperparameters, individual.features)) individual.features = decode(self.variables_range, **individual.features) individual.creation_mode = "inicialization" return individual
def generate_individual(self): individual = Individual() individual.features = [random.uniform(*x) for x in self.variables_range] return individual