def test_create_metadata_file_for_testing(self):
        test_helper.get_mat_test_metadata()

        data_pack = []
        for i, data in enumerate(
                metadata_generator(test_helper.test_mat_metadata_file)):
            data_pack.append(data)
        self.assertEqual(data_pack[0].label, '19')
        self.assertEqual(data_pack[20].label, '2')
        self.assertEqual(data_pack[24].label, '601')
        self.assertEqual(data_pack[24].filename, '25.png')
Пример #2
0
def _create_test_data():
    mat_metadata_file = get_mat_test_metadata()

    filenames, labels, bboxes = [], [], []
    for i, data in enumerate(metadata_generator(mat_metadata_file)):
        filenames.append(data.filename)
        labels.append(data.label)
        bboxes.append(data.bbox())

    write_tf_records(filenames, labels, 5, bboxes, train_data_dir_path,
                     test_data_file)
Пример #3
0
def _create_test_data():
  mat_metadata_file = get_mat_test_metadata()

  filenames, labels, bboxes, sep_bboxes = [], [], [], []
  for i, data in enumerate(metadata_generator(mat_metadata_file)):
    filenames.append(data.filename)
    labels.append(data.label)
    bboxes.append(data.bbox())
    sep_bboxes.append([[int(bb.left), int(bb.top), int(bb.width), int(bb.height)] for bb in data.bboxes])

  write_tf_records(filenames, labels, 5, bboxes, sep_bboxes, 'full', train_data_dir_path, test_data_file)
  write_tf_records(filenames, labels, 5, bboxes, sep_bboxes, 'number_0', train_data_dir_path, test_data_file_number_0)
  write_pickle(bboxes, filenames, labels, sep_bboxes, test_metadata_file)
    def test_metadata_generator(self):
        gen = metadata_generator(test_helper.train_mat_metadata_file)
        sampled = [gen.__next__() for i in range(30)]

        self.assertIsInstance(sampled[0], Data)
        self.assertEqual(
            sampled[0],
            Data('1.png',
                 [BBox('1', 77, 246, 81, 219),
                  BBox('9', 81, 323, 96, 219)]))
        self.assertEqual(
            sampled[20],
            Data('21.png',
                 [BBox(label=2, top=6.0, left=72.0, width=52.0, height=85.0)]))
Пример #5
0
def parse_data(mat_metadata_file_path,
               max_number_length,
               data_dir_path,
               rand_box_count=5):
    metadata = metadata_generator(mat_metadata_file_path)
    filenames, labels, bboxes, sep_bboxes = [], [], [], []
    for i, md in enumerate(metadata):
        if len(md.label) > max_number_length:
            tf.logging.info(
                'ignore record, label too long: label=%s, filename=%s',
                md.label, md.filename)
            continue

        bbox, sep_bbox_list, size = fix_bboxes(md, data_dir_path)
        sep_bbox_list = [[int(v) for v in bb] for bb in sep_bbox_list]

        if any([is_valid_bbox(bb, size) for bb in [bbox] + sep_bbox_list]):
            tf.logging.info(
                'ignore failed to fix record %s(%s), bad bbox. bbox=%s, sep_bbox_list=%s',
                md.filename, size, bbox, sep_bbox_list)
            continue

        if rand_box_count != 0:
            rand_bboxes = random_bbox(rand_box_count, bbox, size)
            for i in range(rand_box_count):
                filenames.append(md.filename)
                labels.append(md.label)
                bboxes.append(rand_bboxes[i])
                sep_bboxes.append(sep_bbox_list)
        else:
            filenames.append(md.filename)
            labels.append(md.label)
            bboxes.append(bbox)
            sep_bboxes.append(sep_bbox_list)

        if i % 1000 == 0 and i > 0:
            tf.logging.info('readed count: %s', i)

    rand_idxes = list(range(len(filenames)))
    random.shuffle(rand_idxes)
    rand_filenames, rand_labels, rand_bboxes, rand_sep_bboxes = [], [], [], []
    for i in rand_idxes:
        rand_filenames.append(filenames[i])
        rand_labels.append(labels[i])
        rand_bboxes.append(bboxes[i])
        rand_sep_bboxes.append(sep_bboxes[i])

    return rand_filenames, rand_labels, rand_bboxes, rand_sep_bboxes
def parse_data(mat_metadata_file_path,
               max_number_length,
               data_dir_path,
               rand_box_count=5):
    metadata = metadata_generator(mat_metadata_file_path)
    filenames, labels, bboxes = [], [], []
    for i, md in enumerate(metadata):
        if len(md.label) > max_number_length:
            tf.logging.info(
                'ignore record, label too long: label=%s, filename=%s',
                md.label, md.filename)
            continue

        bbox, size = fix_bbox(md, data_dir_path)

        if any([j < 0
                for j in bbox]) or bbox[0] >= size[0] or bbox[1] >= size[1]:
            tf.logging.info(
                'ignore failed to fix record %s, bad bbox. bbox=%s',
                md.filename, bbox)
            continue

        if rand_box_count != 0:
            rand_bboxes = random_bbox(rand_box_count, bbox, size)
            for i in range(rand_box_count):
                filenames.append(md.filename)
                labels.append(md.label)
                bboxes.append(rand_bboxes[i])
        else:
            filenames.append(md.filename)
            labels.append(md.label)
            bboxes.append(bbox)

        if i % 1000 == 0 and i > 0:
            tf.logging.info('readed count: %s', i)

    rand_idxes = list(range(len(filenames)))
    random.shuffle(rand_idxes)
    rand_filenames, rand_labels, rand_bboxes = [], [], []
    for i in rand_idxes:
        rand_filenames.append(filenames[i])
        rand_labels.append(labels[i])
        rand_bboxes.append(bboxes[i])

    return rand_filenames, rand_labels, rand_bboxes