def loadSvmModel(modelParams, dataType, setID, repeat, size, X_train, y_train): modelFn = modelParams['modelFn'] if modelFn is not None: model = pickle.load(open(modelFn, "rb")) else: model = train_SVM(X_train, y_train) fn = iconicImagesFileFormat().format("model{}_svm_{}_{}_{}.pkl".format( dataType, setID, repeat, size)) pickle.dump(model, open(fn, "wb")) print(" saved model to {}".format(fn)) print("\n\n-=- model loaded -=-\n\n") return model
transform=None) print('this is the annocount', annoCount) l_feat,l_idx,y = extract_pyroidb_features(pyroidb, 'hog', clsToSet, calc_feat = False, \ spatial_size=(32, 32),hist_bins=32, \ orient=9, pix_per_cell=8, cell_per_block=2, \ hog_channel=0) X_train, X_test, y_train, y_test, X_idx = split_data(train_size, test_size, \ l_feat,l_idx, y,\ clsToSet) print(X_train.shape) print(y_train.shape) X_train, X_test = scale_data(X_train, X_test) model = train_SVM(X_train, y_train) print("accuracy on test data {}".format(model.score(X_test, y_test))) path_to_save = osp.join(cfg.PATH_TO_NTD_OUTPUT, 'Mat1_' + setID + '_' + repeat + '_' + str(size)) cm_cropped = make_confusion_matrix(model, X_test, y_test, clsToSet, path_to_save) #raw image input pyroidb = RoidbDataset(roidb, [0, 1, 2, 3, 4, 5, 6, 7], loader=roidbSampleImage, transform=None) print('this is the annocount', annoCount)