def activate_networks(): p = [1, 0, 1, 6] networks = [] new_networks = [] for i in range(1, 7): network = Network.read_networks(i)[0] networks.append(network) for i in range(0, 6): temp_i_network = networks[i] for j in range(i, 6): temp_j_network = networks[j] if (temp_i_network.error.data[0] > temp_j_network.error.data[0]): temp_network = networks[i] networks[i] = networks[j] networks[j] = temp_network for i in range(0, 3): network = Network(p) network.create_weights() network_1 = Network(p) network_1.create_weights() parent1_index = randint(0, 4) parent2_index = randint(0, 4) w1 = networks[parent1_index].dict_layers[0] w2 = networks[parent2_index].dict_layers[0] w_new, w_new_1 = create_new_weight(w1, w2) network.dict_layers[0] = w_new network_1.dict_layers[0] = w_new_1 w1 = networks[parent1_index].dict_layers[1] w2 = networks[parent2_index].dict_layers[1] w_new, w_new_1 = create_new_weight(w1, w2) network.dict_layers[1] = w_new network_1.dict_layers[1] = w_new_1 new_networks.append(network) new_networks.append(network_1) print(len(new_networks)) with Pool(6) as p: p.map( worker, [[new_networks[0], 1], [new_networks[1], 2], [new_networks[2], 3], [new_networks[3], 4], [new_networks[4], 5], [new_networks[5], 6]])
import torch from torch.autograd import Variable from multiprocessing import Pool from random import randint from mutate import Mutate from nueral import Network from cardata import createCarDataList import logging logging.basicConfig(filename='data.log',level=logging.INFO) car_data_list=createCarDataList() print("Complete") networks=Network.read_networks() def sort(networks): for i in range(0,len(networks)): temp_i=networks[i] for j in range(i+1,len(networks)): temp_j=networks[j] if(temp_i.error.data[0]>temp_j.error.data[0]): temp=temp_i networks[i]=networks[j] networks[j]=temp networks2=[] for i in range(0,10): networks2.append(networks[i]) return networks2