Пример #1
0
def unicode_charseq_strip(a, chars=None):
    if isinstance(a, types.UnicodeCharSeq):
        if is_nonelike(chars):

            def impl(a, chars=None):
                return str(a).strip()

            return impl
        elif isinstance(chars, types.UnicodeCharSeq):

            def impl(a, chars=None):
                return str(a).strip(str(chars))

            return impl
        elif isinstance(chars, types.UnicodeType):

            def impl(a, chars=None):
                return str(a).strip(chars)

            return impl
    if isinstance(a, (types.CharSeq, types.Bytes)):
        if is_nonelike(chars):

            def impl(a, chars=None):
                return a._to_str().strip()._to_bytes()

            return impl
        elif isinstance(chars, (types.CharSeq, types.Bytes)):

            def impl(a, chars=None):
                return a._to_str().strip(chars._to_str())._to_bytes()

            return impl
Пример #2
0
def unicode_charseq_split(a, sep=None, maxsplit=-1):
    if not (
        maxsplit == -1
        or isinstance(maxsplit, (types.Omitted, types.Integer, types.IntegerLiteral))
    ):
        return None
    if isinstance(a, types.UnicodeCharSeq):
        if isinstance(sep, types.UnicodeCharSeq):

            def impl(a, sep=None, maxsplit=-1):
                return str(a).split(sep=str(sep), maxsplit=maxsplit)

            return impl
        if isinstance(sep, types.UnicodeType):

            def impl(a, sep=None, maxsplit=-1):
                return str(a).split(sep=sep, maxsplit=maxsplit)

            return impl
        if is_nonelike(sep):
            if is_default(maxsplit, -1):

                def impl(a, sep=None, maxsplit=-1):
                    return str(a).split()

            else:

                def impl(a, sep=None, maxsplit=-1):
                    return str(a).split(maxsplit=maxsplit)

            return impl
    if isinstance(a, (types.CharSeq, types.Bytes)):
        if isinstance(sep, (types.CharSeq, types.Bytes)):

            def impl(a, sep=None, maxsplit=-1):
                return _map_bytes(a._to_str().split(sep._to_str(), maxsplit=maxsplit))

            return impl
        if is_nonelike(sep):
            if is_default(maxsplit, -1):

                def impl(a, sep=None, maxsplit=-1):
                    return _map_bytes(a._to_str().split())

            else:

                def impl(a, sep=None, maxsplit=-1):
                    return _map_bytes(a._to_str().split(maxsplit=maxsplit))

            return impl
Пример #3
0
def ol_list_sort(lst, key=None, reverse=False):

    _sort_check_key(key)
    _sort_check_reverse(reverse)

    if cgutils.is_nonelike(key):
        KEY = False
        sort_f = sort_forwards
        sort_b = sort_backwards
    elif isinstance(key, types.Dispatcher):
        KEY = True
        sort_f = arg_sort_forwards
        sort_b = arg_sort_backwards

    def impl(lst, key=None, reverse=False):
        if KEY is True:
            _lst = [key(x) for x in lst]
        else:
            _lst = lst
        if reverse is False or reverse == 0:
            tmp = sort_f(_lst)
        else:
            tmp = sort_b(_lst)
        if KEY is True:
            lst[:] = [lst[i] for i in tmp]

    return impl
Пример #4
0
def wavedecn(data, wavelet, mode='symmetric', level=None, axis=None):
    have_axis = not is_nonelike(axis)

    def impl(data, wavelet, mode='symmetric', level=None, axis=None):
        if not have_axis:
            axis = List(range(data.ndim))

        paxis = promote_axis(axis, data.ndim)
        naxis = len(paxis)
        # pmodes = promote_mode(mode, naxis)
        pwavelets = [discrete_wavelet(w) for w
                     in promote_wavelets(wavelet, naxis)]
        dec_lens = [w.dec_hi.shape[0] for w in pwavelets]
        sizes = [data.shape[ax] for ax in paxis]
        plevel = promote_level(sizes, dec_lens, level)

        coeffs_list = List()

        a = data

        for i in range(plevel):
            coeffs = dwt(a, wavelet, mode, paxis)
            a = not_optional(coeffs.pop('a' * naxis))
            coeffs_list.append(coeffs)

        coeffs_list.reverse()

        return a, coeffs_list

    return impl
Пример #5
0
def omnisci_buffer_get_ptr(x, index=None):
    if isinstance(x, BufferPointer):
        if cgutils.is_nonelike(index):
            def impl(x, index=None):
                return omnisci_buffer_ptr_get_ptr_(x)
        else:
            def impl(x, index=None):
                return omnisci_buffer_ptr_item_get_ptr_(x, index)
        return impl
    if isinstance(x, BufferType):
        if cgutils.is_nonelike(index):
            def impl(x, index=None):
                return omnisci_buffer_get_ptr_(x)
        else:
            raise NotImplementedError(f'omnisci_buffer_item_get_ptr_({x}, {index})')
        return impl
Пример #6
0
def _sort_check_key(key):
    if isinstance(key, types.Optional):
        msg = ("Key must concretely be None or a Numba JIT compiled function, "
               "an Optional (union of None and a value) was found")
        raise errors.TypingError(msg)
    if not (cgutils.is_nonelike(key) or isinstance(key, types.Dispatcher)):
        msg = "Key must be None or a Numba JIT compiled function"
        raise errors.TypingError(msg)
Пример #7
0
def omnisci_buffer_set_null(x, row_idx=None):
    if isinstance(x, BufferPointer):
        if cgutils.is_nonelike(row_idx):
            def impl(x, row_idx=None):
                return omnisci_buffer_set_null_(x)
        else:
            def impl(x, row_idx=None):
                return omnisci_array_set_null_(x, row_idx)
            return impl
        return impl
Пример #8
0
def omnisci_buffer_is_null(x, row_idx=None):
    T = x.eltype
    if isinstance(x, BufferPointer):
        if cgutils.is_nonelike(row_idx):
            def impl(x, row_idx=None):
                return omnisci_buffer_is_null_(x)
        else:
            def impl(x, row_idx=None):
                return omnisci_array_is_null_(T, x[row_idx])
        return impl
Пример #9
0
def promote_level(sizes, dec_lens, level=None):
    have_level = not is_nonelike(level)

    if isinstance(sizes, nbtypes.Integer):
        int_sizes = True
    elif (isinstance(sizes, NUMBA_SEQUENCE_TYPES) and
            isinstance(sizes.dtype, nbtypes.Integer)):
        int_sizes = False
    else:
        raise TypeError("sizes must be an integer or "
                        "sequence of integers")

    if isinstance(dec_lens, nbtypes.Integer):
        int_dec_len = True
    elif (isinstance(dec_lens, NUMBA_SEQUENCE_TYPES) and
            isinstance(dec_lens.dtype, nbtypes.Integer)):
        int_dec_len = False
    else:
        raise TypeError("dec_len must be an integer or "
                        "sequence of integers")

    def impl(sizes, dec_lens, level=None):
        if int_sizes:
            sizes = List([sizes])

        if int_dec_len:
            dec_lens = List([dec_lens])

        max_level = min([dwt_max_level(s, d) for s, d in zip(sizes, dec_lens)])

        if not have_level:
            level = max_level
        elif level < 0:
            raise ValueError("Negative levels are invalid. Minimum level is 0")
        elif level > max_level:
            # with numba.objmode():
            #     warnings.warn("Level value is too high. "
            #                   "All coefficients will experience "
            #                   "boundary effects")
            pass

        return level

    return impl
Пример #10
0
def ol_list_sort(lst, key=None, reverse=False):
    # The following is mostly borrowed from listobj.ol_list_sort
    from numba.typed import List

    listobj._sort_check_key(key)
    listobj._sort_check_reverse(reverse)

    if cgutils.is_nonelike(key):
        KEY = False
        sort_f = listobj.sort_forwards
        sort_b = listobj.sort_backwards
    elif isinstance(key, types.Dispatcher):
        KEY = True
        sort_f = listobj.arg_sort_forwards
        sort_b = listobj.arg_sort_backwards

    def impl(lst, key=None, reverse=False):
        if not lst._is_mutable():
            raise ValueError("list is immutable")
        if KEY is True:
            # There's an unknown refct problem in reflected list.
            # Using an explicit loop with typedlist somehow "fixed" it.
            _lst = List()
            for x in lst:
                _lst.append(key(x))
        else:
            _lst = lst
        if reverse is False or reverse == 0:
            tmp = sort_f(_lst)
        else:
            tmp = sort_b(_lst)
        if KEY is True:
            # There's an unknown refct problem in reflected list.
            # Using an explicit loop with typedlist somehow "fixed" it.
            ordered = List()
            for i in tmp:
                ordered.append(lst[i])
            lst[:] = ordered

    return impl
Пример #11
0
def dwt(data, wavelet, mode="symmetric", axis=None):

    if isinstance(data, nbtypes.misc.Optional):
        if not isinstance(data.type, nbtypes.npytypes.Array):
            raise TypeError(f"data must be ndarray. Got {data.type}")
    elif not isinstance(data, nbtypes.npytypes.Array):
        raise TypeError(f"data must be an ndarray. Got {data}")

    have_axis = not is_nonelike(axis)

    def impl(data, wavelet, mode="symmetric", axis=None):
        if not have_axis:
            axis = List(range(data.ndim))

        paxis = promote_axis(axis, data.ndim)
        naxis = len(paxis)
        pmode = promote_mode(mode, naxis)
        pwavelets = [discrete_wavelet(w) for w
                     in promote_wavelets(wavelet, naxis)]

        coeffs = List([("", data)])

        for a, (ax, m, wv) in enumerate(zip(paxis, pmode, pwavelets)):
            new_coeffs = List()

            for subband, x in coeffs:
                ca, cd = dwt_axis(x, wv, m, ax)
                new_coeffs.append((subband + "a", ca))
                new_coeffs.append((subband + "d", cd))

            coeffs = new_coeffs

        dict_coeffs = Dict()

        for name, coeff in coeffs:
            dict_coeffs[name] = coeff

        return dict_coeffs

    return impl
Пример #12
0
def waverecn(ca, coeffs, wavelet, mode='symmetric', axis=None):
    if not isinstance(ca, nbtypes.npytypes.Array):
        raise TypeError("ca must be an ndarray")

    have_axis = not is_nonelike(axis)
    ndim_slices = (slice(None),) * ca.ndim

    def impl(ca, coeffs, wavelet, mode='symmetric', axis=None):
        if len(coeffs) == 0:
            return ca

        coeff_ndims = [ca.ndim]
        coeff_shapes = [ca.shape]

        for c in coeffs:
            coeff_ndims.extend([v.ndim for v in c.values()])
            coeff_shapes.extend([v.shape for v in c.values()])

        unique_coeff_ndims = np.unique(np.array(coeff_ndims))

        if len(unique_coeff_ndims) == 1:
            ndim = unique_coeff_ndims[0]
        else:
            raise ValueError("Coefficient dimensions don't match")

        if not have_axis:
            axis = List(range(ndim))

        paxes = promote_axis(axis, ndim)
        naxis = len(paxes)

        for idx, c in enumerate(coeffs):
            c[not_optional('a' * naxis)] = ca
            ca = idwt(c, wavelet, mode, axis)

        return ca

    return impl
Пример #13
0
def idwt(coeffs, wavelet, mode='symmetric', axis=None):

    have_axis = not is_nonelike(axis)

    def impl(coeffs, wavelet, mode='symmetric', axis=None):
        ndim_transform = max([len(key) for key in coeffs.keys()])
        coeff_shapes = [v.shape for v in coeffs.values()]

        if not have_axis:
            axis = List(range(ndim_transform))
            ndim = ndim_transform
        else:
            ndim = len(coeff_shapes[0])

        paxis = promote_axis(axis, ndim)
        naxis = len(paxis)
        pmode = promote_mode(mode, naxis)
        pwavelets = List([discrete_wavelet(w) for w
                          in promote_wavelets(wavelet, naxis)])

        it = list(enumerate(zip(paxis, pwavelets, pmode)))

        for key_length, (ax, wv, m) in it[::-1]:
            new_coeffs = {}
            new_keys = coeff_product('ad', key_length)

            for key in new_keys:
                L = coeffs[key + 'a']
                H = coeffs[key + 'd']
                new_coeffs[key] = idwt_axis(L, H, wv, m, ax)

            coeffs = new_coeffs

        return coeffs['']

    return impl
Пример #14
0
def idwt_axis(approx_coeffs, detail_coeffs,
              wavelet, mode, axis):

    have_approx = not is_nonelike(approx_coeffs)
    have_detail = not is_nonelike(detail_coeffs)

    if not have_approx and not have_detail:
        raise ValueError("Either approximation or detail "
                         "coefficients must be present")

    dtypes = [approx_coeffs.dtype if have_approx else None,
              detail_coeffs.dtype if have_detail else None]

    out_dtype = np.result_type(*(np.dtype(dt.name) for dt in dtypes if dt))

    if have_approx and have_detail:
        if approx_coeffs.ndim != detail_coeffs.ndim:
            raise ValueError("approx_coeffs.ndim != detail_coeffs.ndim")

    def impl(approx_coeffs, detail_coeffs,
             wavelet, mode, axis):

        if have_approx and have_detail:
            coeff_shape = approx_coeffs.shape
            it = enumerate(zip(approx_coeffs.shape, detail_coeffs.shape))

            # NOTE(sjperkins)
            # Clip the coefficient dimensions to the smallest dimensions
            # pywt clips in waverecn and fails in idwt and idwt_axis
            # on heterogenous coefficient shapes.
            # The actual clipping is performed in slice_axis
            for i, (asize, dsize) in it:
                size = asize if asize < dsize else dsize
                coeff_shape = tuple_setitem(coeff_shape, i, size)

        elif have_approx:
            coeff_shape = approx_coeffs.shape
        elif have_detail:
            coeff_shape = detail_coeffs.shape
        else:
            raise ValueError("Either approximation or detail must be present")

        if not (0 <= axis < len(coeff_shape)):
            raise ValueError(("0 <= axis < coeff.ndim does not hold"))

        idwt_len = idwt_buffer_length(coeff_shape[axis],
                                      wavelet.rec_lo.shape[0],
                                      mode)
        out_shape = tuple_setitem(coeff_shape, axis, idwt_len)
        output = np.empty(out_shape, dtype=out_dtype)

        # Iterate over all points except along the slicing axis
        for idx in np.ndindex(*tuple_setitem(output.shape, axis, 1)):
            initial_out_row = slice_axis(output, idx, axis, None)

            # Zero if we have a contiguous slice, else allocate
            if initial_out_row.flags.c_contiguous:
                out_row = force_type_contiguity(initial_out_row)
                out_row[:] = 0
            else:
                out_row = np.zeros_like(initial_out_row)

            # Apply approximation coefficients if they exist
            if approx_coeffs is not None:
                initial_ca_row = slice_axis(approx_coeffs, idx,
                                            axis, coeff_shape[axis])

                if initial_ca_row.flags.c_contiguous:
                    ca_row = force_type_contiguity(initial_ca_row)
                else:
                    ca_row = initial_ca_row.copy()

                upsampling_convolution_valid_sf(ca_row, wavelet.rec_lo,
                                                out_row, mode)

            # Apply detail coefficients if they exist
            if detail_coeffs is not None:
                initial_cd_row = slice_axis(detail_coeffs, idx,
                                            axis, coeff_shape[axis])

                if initial_cd_row.flags.c_contiguous:
                    cd_row = force_type_contiguity(initial_cd_row)
                else:
                    cd_row = initial_cd_row.copy()

                upsampling_convolution_valid_sf(cd_row, wavelet.rec_hi,
                                                out_row, mode)

            # Copy back output row if the output space was non-contiguous
            if not initial_out_row.flags.c_contiguous:
                initial_out_row[:] = out_row

        return output

    return impl
Пример #15
0
def slice_axis(typingctx, array, index, axis, extent):
    if not isinstance(array, types.Array):
        raise TypeError("array is not an Array")

    if "C" not in array.layout:
        raise TypeError("array must be C contiguous")

    if (not isinstance(index, types.UniTuple)
            or not isinstance(index.dtype, types.Integer)):
        raise TypeError("index is not an Homogenous Tuple of Integers")

    if not isinstance(axis, types.Integer):
        raise TypeError("axis is not an Integer")

    have_extent = not cgutils.is_nonelike(extent)

    if have_extent and not isinstance(extent, types.Integer):
        raise TypeError("extent must be an integer or None")

    if len(index) != array.ndim:
        raise TypeError("array.ndim != len(index")

    # Return a single array, not necessarily contiguous
    return_type = array.copy(ndim=1, layout="A")

    sig = return_type(array, index, axis, extent)

    def codegen(context, builder, signature, args):
        array_type, idx_type, axis_type, extent_type = signature.args
        array, idx, axis, extent = args
        array = context.make_array(array_type)(context, builder, array)

        zero = context.get_constant(types.intp, 0)
        llvm_intp_t = context.get_value_type(types.intp)
        ndim = array_type.ndim

        view_shape = cgutils.alloca_once(builder, llvm_intp_t)
        view_stride = cgutils.alloca_once(builder, llvm_intp_t)

        # Final array indexes. We only know the slicing index at runtime
        # so we need to recreate idx but with zero at the slicing axis
        indices = cgutils.alloca_once(builder,
                                      llvm_intp_t,
                                      size=array_type.ndim)

        for ax in range(array_type.ndim):
            llvm_ax = context.get_constant(types.intp, ax)
            predicate = builder.icmp_unsigned("!=", llvm_ax, axis)

            with builder.if_else(predicate) as (not_equal, equal):
                with not_equal:
                    # If this is not the slicing axis,
                    # use the appropriate tuple index
                    value = builder.extract_value(idx, ax)
                    builder.store(value, builder.gep(indices, [llvm_ax]))

                with equal:
                    # If this is the slicing axis,
                    # store zero as the index.
                    # Also record the stride and shape
                    builder.store(zero, builder.gep(indices, [llvm_ax]))
                    size = builder.extract_value(array.shape, ax)
                    stride = builder.extract_value(array.strides, ax)

                    if have_extent:
                        ext_predicate = builder.icmp_signed(">=", extent, size)
                        size = builder.select(ext_predicate, size, extent)

                    builder.store(size, view_shape)
                    builder.store(stride, view_stride)

        # Build a python list from indices
        tmp_indices = []

        for i in range(ndim):
            i = context.get_constant(types.intp, i)
            tmp_indices.append(builder.load(builder.gep(indices, [i])))

        # Get the data pointer obtained from indexing the array
        dataptr = cgutils.get_item_pointer(context,
                                           builder,
                                           array_type,
                                           array,
                                           tmp_indices,
                                           wraparound=True,
                                           boundscheck=True)

        # Set up the shape and stride. There'll only be one
        # dimension, corresponding to the axis along which we slice
        view_shapes = [builder.load(view_shape)]
        view_strides = [builder.load(view_stride)]

        # Make a view with the data pointer, shapes and strides
        retary = make_view(context, builder, array_type, array, return_type,
                           dataptr, view_shapes, view_strides)

        result = retary._getvalue()
        return impl_ret_borrowed(context, builder, return_type, result)

    return sig, codegen
Пример #16
0
def waverecn(ca, coeffs, wavelet, mode='symmetric', axis=None):
    if not isinstance(ca, nbtypes.npytypes.Array):
        raise TypeError("ca must be an ndarray")

    have_axis = not is_nonelike(axis)
    ndim_slices = (slice(None),) * ca.ndim

    def impl(ca, coeffs, wavelet, mode='symmetric', axis=None):
        if len(coeffs) == 0:
            return ca

        coeff_ndims = [ca.ndim]
        coeff_shapes = [ca.shape]

        for c in coeffs:
            coeff_ndims.extend([v.ndim for v in c.values()])
            coeff_shapes.extend([v.shape for v in c.values()])

        unique_coeff_ndims = np.unique(np.array(coeff_ndims))

        if len(unique_coeff_ndims) == 1:
            ndim = unique_coeff_ndims[0]
        else:
            raise ValueError("Coefficient dimensions don't match")

        if not have_axis:
            axis = List(range(ndim))

        paxes = promote_axis(axis, ndim)
        naxis = len(paxes)

        for idx, c in enumerate(coeffs):
            c[not_optional('a' * naxis)] = ca
            ca = idwt(c, wavelet, mode, axis)

        return ca

    return impl
    
# @numba.njit(nogil=True, fastmath=True, cache=True)
# def ravel_coeffs(a_coeffs, coeffs):
#     ndim = a_coeffs.ndim

#     # initialize with the approximation coefficients.
#     a_size = a_coeffs.size

#     # preallocate output array
#     arr_size = a_size
#     n_coeffs = 0
#     for d in coeffs:
#         n_coeffs += 1
#         for k, v in d.items():
#             arr_size += v.size
    
#     coeff_arr = np.empty((arr_size, ), dtype=a_coeffs.dtype)

#     a_slice = slice(a_size)
#     coeff_arr[a_slice] = a_coeffs.ravel()

#     # initialize list of coefficient slices
#     # coeff_slices = List()
#     # coeff_shapes = List()
#     # coeff_slices.append(a_slice)
#     # coeff_shapes.append(a_coeffs.shape)

#     # numba.typed.Dict(numba.types.unicode_type, numba.types.float64[:])

#     # loop over the detail cofficients, embedding them in coeff_arr
#     offset = a_size
#     for coeff_dict in coeffs:
#         # new dictionaries for detail coefficient slices and shapes
#         # coeff_slices.append(Dict())
#         # coeff_shapes.append(Dict())
        
#         # sort to make sure key order is consistent across Python versions
#         keys = sorted(coeff_dict.keys())
#         for i, key in enumerate(keys):
#             d = coeff_dict[key]
#             sl = slice(offset, offset + d.size)
#             offset += d.size
#             coeff_arr[sl] = d.ravel()
#             # coeff_slices[-1][key] = sl
#             # coeff_shapes[-1][key] = d.shape
#     return coeff_arr  #, coeff_slices, coeff_shapes


# @numba.njit(nogil=True, fastmath=True, cache=True)
# def unravel_coeffs(arr, coeff_slices, coeff_shapes, output_format='wavedecn'):
#     arr = np.asarray(arr)
#     coeffs = List(arr[coeff_slices[0]].reshape(coeff_shapes[0]))

#     # difference coefficients at each level
#     for n in range(1, len(coeff_slices)):
#         slice_dict = coeff_slices[n]
#         shape_dict = coeff_shapes[n]
#         d = {}
#         for k, v in coeff_slices[n].items():
#             d[k] = arr[v].reshape(shape_dict[k])
#         coeffs.append(d)
#     return coeffs[0], coeffs[1:]